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2 1 VECTOR SPACE

1.1 Definition and examples

Once and for all, we let F' denote the set of real numbers or the set of complex
numbers.

Definition 1.1.1. A vector space V' over F is a set with addition and scalar
multiplication:

VxV >V, (vw)eov+w
FxV =V, (kv)—kv

such that
1. forallv,w eV, v+w=w+wv
2. forallu,v,w eV, (u+v)+w=u+ (v+w)

3. there is a zero vector, denoted by Oy, in V such that

v+0y =0y +v=uv forallveV.
4. for each v € V, there is an additive inverse w of v in V such that
v+w=w+v=_0y.
5. foralla,be Fandv €V, (a+b)v = av + bu.
6. foralla € Fandv,w € V, a(v + w) = av + aw.
7. foralla,b € Fandv € V, (ab)v = a(bv).
8. forallveV,1lv=w.

Elements in a vector space are called vectors.

Lemma 1.1.2 (Cancellation law). Let x,y, z be vectors in a vector space V. If
T+2z2=Y+=z

then x = y.




1.1 DEFINITION AND EXAMPLES 3

Proposition 1.1.3.
1. Every vector space V has a unique zero vector Oy .

2. Every vector v € V has a unique additive inverse.

Proof. O

We will write —v for the additive inverse of v, and v — w for v + (—w).

' 3

Theorem 1.1.4. Let V' be a vector space over F.

1. Ov=vwforallveV.
2. a0y =0y foralla € F.

3. (—a)v=—(av) = a(—v) foralla € Fandv € V.

In particular, for all v € V, the additive inverse —v of v is equal to (—1) v.

Proof. O

Example 1.1.5 (Vector spaces of matrices). A m xn matrix A over F is a rectangular
array of numbers in F' with m rows and n columns.

a1l a2 A1n

a1  Aa22 a2n
A =

am1l Am2 - Omn

Write (A);; for the (i, j) entry of A. A m x n matrix Aand a p x q matrix B are equal,
A=B,ifm=pandn = q,and

foralll1 <i<mand1l <j<n.

The set M, (F) of all m x n matrices over F' with matrix addition A+ B and scalar
multiplication cA defined by

(A+ B)ij = (A)ij + (B)ij, (cA)ij = c(A)ij-
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is a vector space over F'. We write M, (F') for My, ,(F'). Its zero vector is the zero matrix

the m x n matrix all of whose entries are zero, and the additive inverse of Aisam x n
matrix B such that (B);; = —(A);; forall i, j.

Example 1.1.6 (Vector spaces of column vectors). A mx1 matrix is called a column vector
of size m and a 1 x n matrix is called a row vector of size n. The set F'™ of all column
vectors of size n whose entries are from F with the following operations is a vector space

over F.
ay b1 C1 c1 ke
ag b2 (6] Co kCQ
+.l=1.1 k.| =
an by, Cn Cn ke,

The zero vector is... the additive inverse of ... is ...

Example 1.1.7 (Vector spaces of functions). The set of functions from a set X to F’
with function addition f + g and scalar multiplication k f defined by

(f+9)(@) = f(x) +9(z), (kf)(z)=Ekf(x)

is a vector space over F. Then, its zero vector is... the additive inverse of f is ...

Example 1.1.8 (Vector spaces of polynomials). The set P("™) of polynomials of degree
at most m with coefficients from F with polynomial addiion and scalar multiplication

(F+9@ =3 (e +b)a's (1)) =Y (ka)a

is a vector space over F. The zero vector is... the additive inverse of f € P(™) is ...
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1.2 Subspaces

Definition 1.2.1. A nonempty subset W of a vector space V over F' is called a
subspace of V., if W is a vector space over F with the same addition and scalar

multiplication of V.

The vector space V itself and {0y } are subspaces of V. The subspace {0y } is
called the trivial subspace. We are interested in nontrivial proper subspaces of
v

fov}SWev

Theorem 1.2.2. Let W be a subset of a vector space V over F. Then, W is a
subspace of V' if and only if it satisfies the following conditions.

1. Oy € W.
2. x+yeWforallz,y e W.

3. kx e Wforallk € Fand x € W.

Proof. O
Example 1.2.3.

1. For any given ki, ..., k,, € F, the following set is a subspace of F™.
ai
W ={ a_2 EF":Xn:kiaizO}.
a‘n -
2. The subsets of M, (F) consisting of
a) symmetric matrices: (A);; = (A)qj; for all i and j,
b) skew-symmetric matrices: (A);; = —(A);; forall i and j,

c) upper triangular matrices: (A);; = 0 for all i > j,
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d) lower triangular matrices: (A);; = 0 forall i < j,

e) diagonal matrices (A);; = 0 forall i # j
are subspaces of M, (F).

3. For any given o € F, the following set is a subspace of P(™).
{f(@) e P f(a) =0}.

Proposition 1.2.4. The intersection of any subspaces of a vector space V is a
subspace of V.

Proof. O
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1.3 Linear combinations

Definition 1.3.1. Let V' be a vector space over F. A vector w € V is a
linear combination of vy, va, ..., vy, if there are a1, ..., ay, € F such that

w = a1V + agvs + - -+ + apvk.

Theorem 1.3.2. Let S be a nonempty subset of a vector space V over F. The set
of all linear combinations of elements in S

Span(S) = Z a;V; L U; € S, a; € F

finite sum

is the smallest subspace of V' contanining S.

The vector space Span(S) is called the subspace of V' spanned by S.

Proof. We claim that Span(S) is the intersection of all subspaces of V' containing
S. Then, by Proposition 1.2.4, it is a subspace of V' and any subspace containing

S should contain it as a subset.

Definition 1.3.3. Let W be a subspace of a vector space V. A spanning set of
W is a subset S of W such that

W = Span(S).







Chapter 2

Basis and dimension
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2.1 Linear independence

Definition 2.1.1. Let V be a vector space over F'. Vectors vy, va, ..., v, € V are
(or the set {v1, ..., vy } is) linearly dependent, if there are a1, as, ..., ay, € F, not
all zero, such that

ai1v1 + asvg + -+ - + apvr = Oy
An infinite subset of V' is linearly dependent, if it contains a finite subset that is
linearly dependent.

Example 2.1.2. Let S = {vy,v9,...,v5} C V.

1. If Oy € S then S is linearly dependent.

2. If thereis v; € S such that
V; =a1v1 + o+ Q1051 + Q410541 + o0+ ARV

for some a; € F then S is linearly dependent.

Definition 2.1.3. Vectors vy,vs,...,vx, € V are (or the set {vy,..., v} is)

linearly independent, if

a1v1 + agvs + - - - + agvr, = Oy

implies that a1 = ag = --- = a, = 0. An infinite subset S of V is linearly
independent, if every nonempty finite subset of S is linearly independent.

Example 2.1.4. 1. Inthe vector space of continuous functions from [—m, | to R, the
following set is linearly independent.
{sinkz,cosflx:1<k<n, 0<{<m}.

2. InR?, the following vectors vy, va, v3, vy are linearly dependent

1 1 1 0

0 0 1 -1
U1 = -1 , U2 = -1 y, U3 = ] , Uy =

0 2 1 1

while vy, v, v3 are linearly independent.
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Theorem 2.1.5. Let V' be a vector space over F and S = {v1,va,...,v,} be
a subset of V. The set S is linearly independent if and only if every vector in
Span(S) can be written as a linear combination of vectors in S in a unique way.

Proof. O
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2.2 Basis

Proposition 2.2.1. Let V' be a vector space over F and S = {v1,...,v} bea
subset of V.

1. Let S be linearly independent. For any v € V \ S, S U {v} is linearly
dependent if and only if v € Span(5S).

2. Let S be a spanning set of V.. Forany v € S, S\ {v} is a spanning set of
V ifand only if v € Span(S \ {v}).

Proof. (1) (=) Assume that S’ = S U {v} is linearly dependent. Then, there are
coefficients, not all zero, such that

a1v1 + asve + -+ - + apv, + bv = Oy
We note that b cannot be zero (if b = 0 then...). Therefore we have
v = (—a1/b)vr + (—az/b)vz + -+ + (—an/b)vn.

This shows that v € Span(.5)

(<) Assume that v € Span(S). Then,

V= a1v1 + agve + -+ + anpv,
for some coefficients a; € F. This gives
a1vy + agvs + -+ + apv, + (—1)v = Oy,

which shows that S” = {v1, ..., v, v} is linearly dependent.

@) Let ' = 5\ {v}. O

Definition 2.2.2. Let V be a vector space over F'. A subset B of V' is a basis of
V., if it satisfies the following two conditions:

1. every finite subset {v1, ..., vy} of B is linearly independent, i.e. if

c1vy + -+ cgv = Oy
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2. the set B spans 'V, i.e., for every vector v € V there are aq, ..., ay, € F and
v, ..., U, € B such that

V=a1v1 + -+ apvg.

Example 2.2.3. The set {E. : 1 < a < 'm, 1 < b < n} isa basis of the vector space
M (F) where Eyy, is the m x n matrix such that
1 ifi=aandj=1b,
(Eab)ij = ,
0 otherwise.
Example 2.2.4. The elementary basis (or standard basis) for the vector space F™ of col-
umn vectors is

0 0

0 0
E={e1=|0],ea= 0|, ..., e.=[:|}

: : 0

_0_ _0_ _1_

Example 2.2.5. The set B = {1,z,22,...,a™} is a basis of the vector space P("™ of
polynomials of degree not more than m.

Let P be a property we want to investigate. A subset B of a set S is a maximal
P subset of S, if there is no P subset of S properly containing B, that is, if B is
a P subset of S and B C B’ then B’ = B.

Theorem 2.2.6. Let S be a spanning set of V. Then, a maximal linearly inde-
pendent subset of S is a basis of V.

Proof. Let B be a maximal linearly independent subset of S. To show that it is
a basis, it is enough to show that V' = Span(3). Note that D is trivial. Now we
claim
S C Span(B).
If this is true then, since Span(.9) is the smallest subspace containing S, Span(S) C
Span(B). From the hypothesis V' = Span(.5),
V = Span(S) C Span(B)
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and we see that V' C Span(83) and therefore V' = Span(B).

Let us prove the claim. We need to show that for all v € S, v € Span(B). (i) if
v € S is an element in B then it is clear that v € Span(B). (ii) if v € S \ B then
B U {v} is linearly dependent (because of the maximality condition on ). Thus,
we can find some elements v; € B and coefficients, not all zero, such that

k
Z a;v; + cv = Oy

=1

In particular, ¢ cannot be zero (why?). Therefore, v = Zle(—ai/ c)v; and this
shows that v € Span(B). O
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2.3 Dimension

Theorem 2.3.1 (Replacement theorem). Let V' be a vector space over F and
B = {v1,...,u,} be a basis of V. If a subset S = {w1,...,wr} of V with k
elements is linearly independent then k < n.

S| < |B].

Proof. In order to derive a contradiction, suppose that k& > n. Since B spans V,
wy € S can be written as

Wi = a1V1 + a2V2 + - -+ + anvVy
with some aq,...,a, € F. Since w; # Oy, not all a; are zero. After reindexing
them, if necessary, we assume that a; # 0. Then,
v1 = (1/a1)wy — (az/ar)ve — - — (an/a1)v,

and we can check that the set obtained from 5 by replacing v; with w,

By = {w1,va,v3, ..., 0n }
is a basis of V.

In a similar way, we can replace v, in 3; with ws to obtain a basis B,. Continue

these procedures until we obtain a basis

B, = {wy,ws, ..., wp }.
Then since B,, spans V, w41 can be written as a linear combination of wy, ..., wy,

which contradicts to the assumption that S is linearly independent. Therefore,
k<n. O

Theorem 2.3.2. Let V' be a vector space over F and B be a basis of V having
finitely many elements. Then, any other basis B’ of V' contains finitely many
elements and

5| = |B].

Proof. Using Theorem 2.3.1, since B is a basis and B’ is linearly independent,
|B| > |B'|. Since B’ is a basis and B is linearly independent, |B| < |B/|. O
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Definition 2.3.3. The number of vectors in a basis I3 of a vector space V' is called
the dimension of V.
dim V = |B|

Example 2.3.4.

1. The dimension of M, (F’) is mn.
2. The dimension of F™ is n.

3. The dimension of P(™) is m + 1.

Theorem 2.3.5. Let W be a subspace of a vector space V.
1. dimW < dimV.

2. IfdimW =dimV then V = W.

Proof. (1) Find a basis {ws, ..., wy } of W. Then, since it is linearly independent in
V, k < dimV by Theorem 2.3.1.

(2) Let dimW = dimV = n and By be a basis of W. Suppose that W is a
proper subset of V. Then, we can find v € V' \ W so that the following set with
n + 1 elements

By U {v}

is linearly independent in V, which contradicts to Theorem 2.3.1. O

Theorem 2.3.6 (Basis extension theorem). Let V' be a vector space with
dimV = n and W be a subspace of V. If {v1,...,vs} is a basis of W then
there are vectors Vi1, ...,v, € V' \ W such that

B = {’Ul, V2y ooy Uy U4 1y o5 ’Un}

is a basis of V.
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Proof. From Proposition 2.2.1, if we choose viy1 € V' \ Span({v1, ..., vz }) then
dim Span({vl, ey Uk ’l}k+1}) =k+1.

Repeat this procedure until we obtain W = Span({v1, ..., v, }). Since W is a sub-
space of V with dimension equal to dim V, we have W = V and thus B is a basis
of V. O
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3.1 Maps between vector spaces

Definition 3.1.1. Let V' and W be vector spaces over the same F. A map T
from V to W is a linear transformation, if it satisfies

T(v1+v2) =T(v1) +T(ve) and T(kv) = kT (v)

\.

forall vy, ve,v € Vand k € F.
Example 3.1.2. 1. F? — F?,
x
H

3. P over R » R, f — [* f()da.

ax + by
cx + dy

2. plm) 5 plm) £y

4. Theidentitymap Iy : V =V, v — .
5. Thezeromap To: V — W, v — Oy

6. Myn(F) — My (F) sending A to its transpose AT, the n x m matrix such that
(AT)iy=(A);i for1<i<m,1<j<n

7. M, (F) — F sending A to its trace tr(A) = > (A)i.

i=1

Proposition 3.1.3. Let V and W be vector spaces over the same F and T : V —
W be a linear transformation.

1. T(0v) = Ow.

2. For every v € V, the inverse of v in V maps to the inverse of T'(v) in W,
ie.,
T(—v)=-T(v) forallveV.

3. T av) =2 aiT(v;) foralla; € Fand v; € V.

Proof. O



3.1 MAPS BETWEEN VECTOR SPACES 21

Proposition 3.1.4. Let V and W be vector spaces over the same F and B =
{v1, ..., vn} be a basis of V. For any vectors wy, ..., w,, in W, there is a unique
linear transformation

T:V — W suchthat T(v;) = w;

forj=1,2,...,n.

Proof. O

Let V and W be vector spaces over the same F. We write Homp (V, W) for the
set of all linear transformations from V' to W.

e 3

Proposition 3.1.5. The set Hom g (V, W) with the following addition and scalar
multiplication is a vector space over F. For T, S € Homp(V,W) and k € F,
T + S and kKT are the maps from V to W defined by

(T+S)(v) =T(v) + S(v) and (kT)(v) = k(T (v)).

forallveV.

Proof. O

Then, the zero vector in Hom g (V, W) is the zero map (Example 3.1.2), and the
additive inverse of T' € Hompg(V, W) is =T : V — W defined by

(=T)(v) = —(T(v)) forallve V.

Proposition 3.1.6. Let U, V, and W be vector spaces over the same F. If S :
U—VandT :V — W are linear transformations then their composition

ToS:U—->W

is also a linear transformation.
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Proof. For uj,us,u € Uand k € F,
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3.2 Subspaces associated with T’

Let us recall some terminologies. Let f be a function from X (domain) to YV’
(codomain). For subsets A C X and B C Y, the image of A under f and the
preimage of B under f are

f(A)={f(zx)eY :zc A} and fY(B)={z € X : f(z) € B}

respectively. When A = X, we often write im f for f(X) and call it the range or
image of f.

e B

Theorem 3.2.1. Let T : V. — W be a linear transformation. Then, the kernel
and image of T'

kerT={veV:T(v)=0w} and imT ={T(v) :v €V}

are subspaces of V and W respectively.

Proof. (1) We need to show thati) Oy € ker T, ii) v; + v € ker T for vy, vy € ker T,
and iii) kv € ker T forv € ker T and k € F.

(2) We need to show thati) Oy € im T, ii) v1 + v € im T for vy, vy € im T, and
iii) kv € imT forv € imT and k € F. O

We remark that the kernel and image of 1" are also called the null space and
range of T, and often denoted by N (T') and R(T') respectively.

Theorem 3.2.2. Let T : V. — W be a linear transformation. The map T is
one-to-one if and only if its kernel is trivial, i.e.,

kerT = {0y }.

Proof. (=) Since T'(0y) = Ow (Proposition 3.1.3), Oy € kerT. Since T is one-to-
one, if T(v) = Oy = T'(0y ) then v = Oy. Thus, kerT' = {0y }.

(<) Suppose T'(v) = T(v'). Then, T'(v) — T'(v') = Ow and thus T'(v —v’) = Ow,
which implies v — v’ € kerT. Since kerT = {0y}, we have v — v’ = 0y and
therefore v = v’. O
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Proposition 3.2.3. Let T : V. — W be a linear transformation. If S =
{v1, ..., v} spans V then

T(S) = {T(Ul)v 7T(Un)}

spans im T'.

Proof. Need to show that
Span({T'(v1), ..., T(vp)}) =imT.
(Q) If w is an element in LHS then it is a linear combination
w=a1T(v1) + -+ a,T(vy)

for some ay, ...,a, € F. Then, w = T(>_ a;v;) and thus it is an element in im 7.

(D) Letw € imT. Then, w = T'(v) for some v € V and v = Y, a;v;. This shows
that

w=Tw) =T <Z am—> = a;T(v;) € Span({T'(v1), ..., T(vn)}).
i=1

i=1
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3.3 Rank-nullity theorem

The nullity of a linear transformation 7' is the dimension of the kernel (or null

space) of T', and the rank of T is the dimension of the image (or range) of T'.

Nullity T = dim ker T, RankT = dimimT.

Theorem 3.3.1 (Rank-Nullity theorem, Dimension theorem). Let V and W
be vector spaces over the same F and T : V. — W be a linear transformation. If
the dimension of V' is finite then it is the sum of the rank of T and the nullity of
T.

dimV = Rank7 + Nullity 7.

Proof. Welet dim V' = n and Nullity 7" = k. We assume that 0 < k£ < n. One can
consider the other cases k = 0 and k = n separately.

Suppose that {v1,...,v;} is a basis of ker T'. Then, by Theorem 2.3.6, we can

find vectors vi41, ..., v, € V' \ Span({v1, ..., v }) to form a basis of V'
B = {vh U2y ooy Uky Uk-15 -0y ’Un}~

We claim that S = {T'(vg+1), ..., T'(v,)} is a basis of im T'.

(i) First, let us show that S spans im 7. Since B spans V and T'(v;) = Ow for
1 <4 <k, by Proposition 3.2.3,

imT = Span({T'(v1), ..., T(vg), T (Vk41), . T(vn)})
= Span({T'(vg+1),...T(vp)}).

(if) To prove that S is linearly independent, suppose that for some b; € F,
i=k+1

Since T is a linear transformation, we have T (ZI‘: k1 bivi) = Ow, and thus
> i1 bivi € ker T. Since {vy, ..., vy} is a basis of ker T, there are ¢; € F' such

that
n k
> b= e
=1

i=k+1
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and thus
(—c1)vr + -+ (—cr) vk + bpp1Vks1 + - - + bpvp, = Oy

Since B is a basis, we have b; = 0 for all s. O

Corollary 3.3.2. Let V and W be finite dimensional vector spaces over the same
FandT : V. — W be a linear transformation. If dimV = dim W then the
following are equivalent.

1. T is one-to-one.
2. T is onto.

3. The rank of T is equal to dim V.

Proof. O
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3.4 Isomorphism

Definition 3.4.1. Let V and W be vector spaces over the same F.

1. Amap T : V. — W is an isomorphism, if it is a bijective linear transfor-
mation.

2. If there is an isomorphism from V to W then we say V' is isormorphic to
W and write
V= W

Example 3.4.2. 1. For any permutation o of {1,2,...,n}, the following map is an

isomorphism.
Z1 To(1)
T2 Ts(2)
T,: F" — F", —
Ln Lo(n)

2. The map M, (F) — My, (F) defined by A — AT is an isomorphism (Exam-
ple 3.1.2). In particular, the vector space F'™ = M, (F’) of column vectors is
isomorphic to the vector space My, (F’) of row vectors.

Theorem 3.4.3. Vector space isomorphism is an equivalence relation on any
collection of finite dimensional vector spaces over the same F'.

Proof. We need to show that

1. for any V, the identity map Iy, : V' — V is an isomorphism.

2. if T: V — W is an isomorphism then its inverse map 7! : W — V is also
an isomorphism.

3.if S: U - Vand T : V — W are isomorphisms then their composition
T o S is an isomorphism from U to W (Proposition 3.1.6).
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As a consequence of this result, a collection of finite dimensional vector spaces
can be partitioned into equivalence classes. We expect that two vector spaces in
the same equivalence class share many important properties.

Theorem 3.4.4. Let V and W are finite dimensional vector spaces over the same
F. IfV =W thendimV = dimW.

The converse of Theorem 3.4.4 is also true. See Theorem 4.1.4.

Proof. Let T : V' — W be an isomorphism and B = {v1, ..., v, } be a basis of V.
We want to show that

{T(v1),...., T(vn)}
is a basis of W.

(1) Since T is surjective, for every w € W there is v € V such that w = T'(v).
Then, v = Y., a;v; and

w=Tw) =T <Z aivi> = ZaiT(vi).

Therefore {T'(v1), ..., T(vy,)} spans W (cf. Proposition 3.2.3).
(2) To show that it is linearly independent, suppose Z;;l a;T(v;) = Ow. Then,

§ a;T Uz = E azvz

the vector " | a;v; is in the kernel of T Smce T is injective, ker T' = {0y } and

thus
n
Z a;v; = Ov.
i=1

This implies that all a; are zero because {v1, ..., v, } is linearly independent. [

since
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4.1 Coordinate vector of v

Let V be a vector space over F. Once a basis B = {b1, ..., b, } of V is given, every
v € V can be expressed as a linear combination of vy, ...,v, in a unique way:
there are unique ay, ..., a, € F such that

n
v = E a;V;.
i=1

Then the coordinate vector of v with relative to B is the column vector

ay
s =1 . |- (4.1.1)

an

Note that the order of elements in B is important in this context.

7

Proposition 4.1.1. Let V be a vector space over F and B = {v1,va, ..., v, } be
a basis of V. The map sending v to its coordinate vector [v]g relative to a basis B

[l8:V—F", v [vlg

is an isomorphism.

Proof. (1) For any element
T
Xx=|:|€F",
Tn
wehavev = )" | z;v; € V and it satisfies [v]s = x. This shows that the map [ |5
is onto. To show that the map [ |5 is one-to-one, for any two vectors v,v" € V we
want to show that [v]p = [v|p implies that v = v’. Let us write v and v’ as linear

n n
v = E a;v; and v = E aiv;.
i—1 i—1

If [v]g = [v'] then a; = a] for all ¢ and

combinations as

n

v—0v =v+ (=1 = iaivi + i(—a;)vi = Z(ai —a;)v; = iOvi = Oy.
i=1 i=1 i=1

i=1
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Therefore v = v'.
(2) To show that it is a linear transformation, we need to check
v+ =[v]g+[V]s and [kv]|s = k[v]s

forall v,v’ € Vand k € F. For v,v' € V, we can find ay, ..., a,,a},...,a, € F

ey ah
such that
n n
v = Zaivi and v = Zagvi.
i=1 i=1

Then, from v +v' = (31, aiv;) + (X abvi) = > i (a; + al)v,
ay + aj ay ay
[v+']5 = : =+ || =kls+[]s

li

/
an + ay, Qn a,,

Also, forevery k € Fandv € V, wehave kv = k(}_;_, a;v;) = Y i, (ka;)v;, and
thus
/{/’CLl aq

Theorem 4.1.2. Every n-dimensional vector space V over F is isormorphic to
Fm.
V=F"

Proof. Choose any basis B of V. The map [ |5 gives an isomorphism from V to
F. O

Example 4.1.3.
1. My (F) = Fm,
2. pm) = pmtl,
3. The space of n x n symmetric matrices over F is isomorphic to F™"+1)/2,

4. The space of n x n skew-symmetric matrices over F is isomorphic to F™("—1)/2,
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Theorem 4.1.4. Let V and W be finite dimensional vector spaces ove the same
F. Then, dimV = dim W if and only if V = W.

Proof. («)is given in Theorem 3.4.4. Now we prove (=). LetdimV =dim W =
n, and fix bases B and C for V and W. We have isomorphisms (Proposition 4.1.1)

HBIV—>Fn7 []c:W—)Fn

Then, [ |z o[]s : V — W is an isomorphism and thus V = W.

To give a more explicit isomorphism, let B = {vi,...,v,} and C = {w1, ..., w,, }
be bases of V' and W respectively. Then, there is a unique linear transformation
such that

T:V—=W, Tj)=w; forl<j<n
by Proposition 3.1.4 and it is surjective by Proposition 3.2.3. To show that it is
injective, we compute the kernel of 7'. If 7'(v) = Oy for some v € V and v =
>y ajv; for some a; € F), then

n n n
T(U) =T Zajvj = ZajT(vj) = Z a;wW; = Ow.
j=1 7j=1 j=1

Since w; are linearly independent, a; = 0 for all j and therefore v = Oy O
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4.2 Matrix multiplication

Recall that two matrices are equal, if they are of the same size and their (3, j)
entries are equal for all (i, j). We write (M);; for the (i, j) entry of a matrix M.

' 3

Definition 4.2.1 (Matrix multiplication: row by column). The product AB
of a m x nmatrix A and a n x £ matrix B is the m x { matrix whose (i, j) entry
is .
(AB)ij = > (A)ir(B)s;
k=1
for1<i<mandl<j </

\. J

To compute the (7, j) entry of AB, using the ith row of A and the jth column
of B,

n
ail Qi Qip . = > k—1 Qikbr;

Proposition 4.2.2. For all m x n matrices A, n x k matrices B and B, k x ¢
matrices D, and c € F,,

AB+B')= AB+ AB', A(cB) = ¢(AB), (AB)C = A(BC).

Proof. In each case, after verifying that the matrices in the both sides of the equal-
ity have the same size, we need to check that for all (s, t),

NE

(A(B + B/))st = (A)SP(B + B/)pt

1

]
S

(A)SP((B)pt + (B/)pt) = Z(A)SP(B)pt + Z(A)SP(B/)Pt

p=1

[

— (AB) + (AB')y.
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n k
- Z(A)gp (Z(B)pq(c)qt> = (A(BC))et

A column vector x € F" can be considered a n x 1 matrix. Then, the product
of a m x n matrix A = (a;;) and a column vector x € F™ is

ail  aiz ot Gl Ty 1121 + A12%2 + - + A1 Ty
az1 a2 azn T2 a21%1 + A22%2 + ++ + + A2 Ty
Ax fr— fr—
Am1 Am2 o Omn Tn Am1T1 + Am2T2 + -+ AmnTn
(4.2.1)

It is often very useful to notice that the matrix-vector product Ax can be real-

ized as a linear combination of columns of A, and vice versa:

ai1 a2 - Q1n T a1 a12 A1n
a21 a22 a2n €2 a21 a22 A2n
=T . + T2 . +-- 4+ In
Am1  Am2 ot Qmn Tn am1 Am?2 Amn
and thus
Ax = 5(,‘1141 + ]}2142 4+ 4 ann (422)

where A, = C(A) is the kth column of the matrix A. Then, the product of two
matrices A and B can be realized as a list of matrix-vector products

AB=|ABy AB, - AB|
where By, = Cy(B) is the kth column of B.

Alternatively, we can multiply two matrices column by row.
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Proposition 4.2.3 (Matrix multiplication: column by row). If Aisam xn

matrix and B is a n x ¢ matrix then

AB =" Ci(A)Ri(B)
k=1

a1 A1n
a21 a2p

= | [en bz e b | [ b o bl
A1 Amn

where Cy,(A) is the kth column of A and Ry, (B) is the kth row of B.

Proof. Note that for each k, Cj,(A) R (B) is an m x £ matrix and its (7, j) entry is
(A)ix(B)k;. Then their sumover k = 1,2,...,n

(A)ir(B)1j + (A)12(B)j + -+ + (A)in(B)n;
is equal to (AB);; in the definition of AB. O
Example 4.2.4. The identity matrix I,, is the n x n matrix such that

1 ifi=j,

! 0 otherwise.

Then, for all m x n matrices X and n x k matrices Y,

XI,=X and I,Y =Y.

Definition 4.2.5. A n x n matrix A is invertible, if there exists a n x n matrix
B such that

BA =1, and AB = 1I,,.
We write A=! for B and call it the inverse of A.

We will study the properties of invertible matrices later, including the unique-

ness of A~! when A is invertible.
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4.3 Linear transformations and matrices

4.3.1 Matrix representation of 7'

,

Lemma 4.3.1. Let A be a m x n matrix over F'. Then, the map L 4 defined by
matrix vector multiplication as in (4.2.1)

LAZFn—>Fm, LA(X)ZAX

is a linear transformation.

Proof. This follows from Proposition 4.2.2. O

Lemma 4.3.2. Let A and B be m x n matrices over F'. Then, Ly = Lp if and
only if A = B. That is,

Ax = Bx forallx € F"

if and only if A = B as a matrix.

Proof. (=) Note that L 4(e;) = Ae, is the jth column of A. Thus, C;(A4) = C;(B)
for all j. O

Lemma 4.3.3. For every linear transformation T : F™ — F™, there is a unique
m X n matrix A such that T = L 4, and thus

T(x) = Ax forallx € F".

Proof. First we want to find a matrix A such that T'(x) = Ax for all x € F™. Then
the uniqueness of A follows from Lemma 4.3.2.
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Using the elementary basis £ = {ei,es,...,e,} of F and the fact that T"is a
linear transformation,

T(x)=T (Z xﬁi) = Z%‘T(ei)

X I
| | | - -
= |T(e1) T(e2) --- T(en) | forallx=
| | | '
Ty Tn

For the third equality we used the observation (4.2.2). Therefore, T' = L 4 where
| | |
A= T(el) T(eg) s T(en)
| | |

Theorem 4.3.4. Let V and W be vector spaces over the same F. Let B =
{v1,...,vn} and C = {w1, ..., wp, } be bases of V and W respectively. For every
linear transformation T : V. — W, there exists a unique m x n matrix [T]pc
such that

[T(v)]c = [T]BC [’U}B fOT’ allveV. (431)

The matrix [Tgc is called the matrix representation of T with relative to bases
BandC,

If V = W and the same basis B is used for the domain and codomain of T,
then we write [T for [T]gp.

Proof. Note that we are looking for a matrix A = [T|gc making the diagram in
Figure 4.1 commutes. Since [ |3 is an isomorphism (Proposition 4.1.1), its inverse
is an isomorphism from ™" to V and thus

[lcoTo[lg' : F" - F™
is a linear transformation. By Lemma 4.3.3, it should be of the form L 4 for some
matrix A.
[leoTollg' = La
Therefore, [T (v)]c = Lalv]pforallv e V. O
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V4T>W

[]BJ/ J{[]c
La

F’I’LHFTQ

{Figure 4.1 The matrix representation of T’ with relative to 5 and C.

Now we compute the matrix representation [T 5c explicitly. For every v € V,
we can write v = > | a;v; and

[T(v)]e = T(Zai%’)] Zzai[T(Ui)]c
L i=1 ¢ i=1
| | T e
= |[Tw)le [T(v2)le - [T(vn)le
| |
| | |
= |[Tw)le [T(w2)le -+ [T(wn)le| [v]s:
L | |

Here, we used the fact that the coordinate map [ ]¢ is a linear transformation
(Proposition 4.1.1) for the second equality and the observation (4.2.2) for the third
equality.

Proposition 4.3.5. With the above notation, the matrix representation of T :
V' — W with relative to B and C is

Example 4.3.6. Find the matrix representations of
1. T: P® — P®), f s 3f

2.T:P® 5 PW, fs 2u+1)f
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with relative to bases B = {1, x, 22,2} for P®) and C = {1, x, 22, 23,2} for P™).

Example 4.3.7. Let T : P®) — P®) given by f(x) — xf'(x). Compute [T]s and
[T where

1. B = {4x,322,2,2*}.
2. B ={1—-2,0+a2% 2% 23 2%}

Example 4.3.8. Let V and W be vector spaces over F of dimension n and m respectively.

1. The matrix representation [T')gc of the zero map Ty : V' — W with relative to any
bases B and C is the m x n zero matrix.

2. The matrix representation [Iy/|g of the identity map Iy : V — V with relative to
any basis B for V' is the identity matrix I,,.

4.3.2 Homp(V,W) and M, (F)

Recall that Hom g (V, W) is the vector space of linear transformations from V' to
W (Proposition 3.1.5).

Lemma 4.3.9. Let V and W be vector spaces over the same F with bases 15 and
C respectively. For all linear transformations T, S : V. — Wand k € F,

[T + S]BC = [T]BC + [S]BC and [kT]BC = k[T]Bc.

Proof. Let B = {v1,...,v,}. From Proposition 4.3.5, the jth column of [T + S]g¢
is

(T + 5)(wj)le = [T(v;) + S(vy)le = [T (vj)le + [S(vs)le,
which is the jth column of [T']gc + [S]sc- The jth column of [kTzc is
[(KT)(v)le = KT (vj)le = k[T (v))]e,
which is the jth column of &[T zc. O
In Theorem 4.1.2, we saw that every abstract n-dimensional vector over F is

isomorphic to F*. Now we have a similar result for the vector space of linear
transformations.
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Theorem 4.3.10. Let V' be a vector space of dimension n and W be a vector
space of dimension m over the same F. Then,

Homp(V,W) =2 M, (F).

Proof. Let us fix bases B and C for V' and W respectively. Then, by Lemma 4.3.9,
T~ [Tlsc

is a linear transformation from Hom g (V, W) to M,,,,(F). Now we need to show

that this map is one-to-one and onto. O

Example 4.3.11. In Example 2.2.3, we found the following basis for the vector space
My (F).

{Eap € My (F):1<a<m, 1<b<n}.
Verify that the elements in Hom g (V, W) corresponding to Eq, under the above isomor-
phism are
we ifb=k,
Top : V=W, Tap(v) =

0  otherwise.

where B = {v1,...,vp} and C = {wn, ..., wy, } are bases of V and W respectively, and
therefore the maps Ty, form a basis of Hom g (V, W). See the proof of Theorem 3.4.4.

Next we want to show that matrix multiplication studied in §4.2 can be realized
as the composition of linear transformations.

Theorem 4.3.12. Let U, V, and W be vector spaces over the same F with bases
A, B, and C respectively. If S : U — Vand T : V — W are linear trans-
formations then their composition T o S : U — W is a linear transformation
and

[T o Slac = [T]sc [S]as-

Thus, the isomorphism given in Theorem 4.3.10 extends to the correspondence
between the composition of linear transformations

Homp(U,V) x Homg(V,W) — Homg(U, W), (S,T)—ToS
and matrix multiplication

Myo(F) X My (F) = Mpo(F), (X,Y)— YX.
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Proof. The fact that T'o S is a linear transformation is shown in Proposition 3.1.6.
Now, we note that for all u € U,

where we used the associativity of matrix multiplication for the first equality
and (4.3.1) for the others. Next, let dimU = n. Since [ |4 : U — F™ is surjective
(Proposition 4.1.1), the above identities become

((T]sc [Slas) x=[(T' o S)lacx forallx € F™.
Now by applying Lemma 4.3.2 we conclude that [T]g¢ [S]ag = [T 0 S|ac as a

matrix. O

Let V be a n-dimensional vector space over F. Linear transformations from
V to itself are called endomorphisms of V' and we write End (V) for the vector

space of endomorphisms of V.
Endp(V) =Homp(V,V) = M, (F).

Note that End (V') is closed under composition.

Corollary 4.3.13. Let V be a finite dimensional vector space over F and BB be a
basis of V. Forall T, S € Endp(V)and k € F,

[T+ Sls=[Ts + S, [kT]s = k[T5

and
[T o S]s = [T]5[S]s-
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<Figure 42> A basis-change matrix.

4.4 Change of basis

4.4.1 Basis change matrix

Let B and C be bases of a vector space V over F. Since the coordinate maps [ |5
and [ ]¢ from V to F™ are isomorphisms, so is their composition

[leo[lg": F" — F™
By Lemma 4.3.3, this map should be of the form L, for some matrix A, which
we will denote by F¢._ 5. See Figure 4.2.

Definition 4.4.1. With the above notation, the matrix Pc. g satisfying
[U]c = Peep [U]B fOT allveV

is the basis-change matrix (or transition matrix) from B to C.

Let B = {v1,...,v,} and compute the matrix Pe.p. For any v € V, we have
v=> " kv, and then

n | |

[v]e = kai => kilvile = |[vile - [vale

¢ = | |1 | kn

k1
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Proposition 4.4.2. Let B = {vy,...,v,} and C be bases of a vector space V.
Then the basis-change matrix from B to C is

| |
Peep=|[ni)e -+ [vnle

\. J

Example 4.4.3. Let V = P®) and B = {1,z,22, 23}. For each of the following cases,
find the basis change matrix from B to C.

1. C={l,(z—1),(x—1)% (z—1)3}

2.C={1,(z+1),(x+ Dz, (z+ 1)z(xz—1)}.

We note that since [ ]¢ o [ ]z' is an isomorphism, the linear transformation
Lp._, is invertible and its inverse map should be

L71

PC(—B = LPB(—C'

In particular, we have
(PaecPees) [vls=[v]s and (PeepPsec)v]e = [vlc
for all v € V. See Figure 4.3. Then, by Lemma 4.3.2, we have

PsecPeep = FPepPpec = Iy,

Proposition 4.4.4. For any two bases 3 and C of a vector space V,

-1 —1
PC(*B = PB%C and PB%C = PC%B~

4.4.2 Matrix similarity

Now we focus on a linear transformation 7" : V' — V with the same basis B for
the domain and codomain. This gives a matrix representation [Tz of T

Proposition 4.4.5. Let B and C be bases of V. Two matrix representations [Tz
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{Figure 4.3> Basis-change matrices and their inverses.

[T]s
"B pn
[1s AN
v T v
e N\ v v 2 e
Fn . pn
[T]e

{Figure 4.4) Matrix representations [T]s and [Tc.

and [T'|¢ of the same linear transformation T : V — V satisfy

[Tlc = Pgle[Ts Psec

Proof. See Figure 4.4. Forallv e V,
(Psle T]s Poic) [le = Pgle [T]s (Pec [Vlc)
= Pgle ([Tl vls) = Pele [T(v)]s
=Peep [T(v)]s =[T(v)]e = [T]e [v]e-

Since [J¢ : V — F™ is surjective, we have (Pgl. [T]5 Pscc) x = [T]cx for all

&

~—

x € F™ and therefore, as a matrix, [T]c = Pg,' . [T]s Psec- O

Example 4.4.6. For T : V — V and bases B and B’ of V' given in Example 4.3.7, find
the basis change matrices Pg. g and Pp: ., and then verify Proposition 4.4.5.
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Fm—sF"

Peoc Pe g

[Lalc

Fm Fm

{Figure 4.5) L. and [Lac.

When working with the vector space F'" of column vectors and linear transfor-
mations from F" to itself, we implicitly use the elementary basis £ = {eq,...,e,}
(Example 2.2.4). Note that

1. v=[vlgforallv e F",

2. A =[Lal¢ for any n x n matrix A.

Now let us compute the matrix representation of L4 : " — F" with relative
to a new basis C of F".

7 D

Proposition 4.4.7. Let C = {vy, ..., v, } be a basis of F". The matrix represen-
tation of L 4 with relative to C is

[Lale = PileAPecc

where

Peec=|vi vy - v,

Proof. See Figure 4.5. Note that if v € F™ then [v]g = v. Then, using Proposition
4.4.2, we have

Peece=|[vile [vole -+ [Vale| =|vi va -+ v,
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Definition 4.4.8. A n x n matrix A is similar to A’, if there is an invertible
matrix X such that

A = X1AX.

Proposition 4.4.9. Matrix similarity is an equivalence relation on M, (F).

Proof. (1) For any A € M,(F), A = I,;'Al, and thus A is similar to itself. (2)
Suppose that A is similar to B. Then, there is X such that B = X 'AX, and
with Z = X! we have A = Z~!BZ, which shows that A is similar to B. (3)
Suppose that A is similar to B and B is similar to C. Then, there exisit X and Y’
suchthat B= X"1'AX and C =Y 'BY. With Z = XY, wehave C = Z~1AZ
and therefore, A is similar to C. O

Let B and B’ be bases of V. Then, the matrix representations A = [T]z and
A" = [T of the same linear transformation 7' : V' — V are similar, since A’ =
X~1AX with

X =Pgep-
On the other hand, the matrix A can be thought of the matrix representation of
L4 : F" — F" with relative to the elementary basis £ of F". If C = {w1, ..., w,,}
is the basis of F'"* consisting of the columns of the matrix X (cf. Theorem 6.1.4)
then X is equal to the basis change matrix

X=Peec=|w, - w,
| |

Therefore, A’ = X "' AX can be thought of the matrix representation of L 4
A" =[Lale
with relative to C. See Figure 4.6.

Example 4.4.10. Consider T : P®) — P®) given by f(x) — xf'(x). In Example
4.3.7, we computed the matrix representations

A=[Tg and A =[T|s
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|4 v
/ AN
[1s [1s
5/{ Fn LA Fn \ B’
(] \ /[]
\ X Xt /
AN /
AN » e

F"—F"

<Figure 4.6) Similar matrices A and A’.

with relative to the bases B = {4z, 322 2,23} and B' = {1 —z,x + 22, 2% — 23,23} of
P®). See also Example 4.4.6. Find a basis C of ™ such that

A = [Lale.
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Systems of linear equations
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5.1 Gaussian elimination

A system of m linear equations with n unknowns is

a1121 + a12%2 + -+ A1p Ty = by

a21%1 + A22%2 + -+ + A2p Ty, = by

Am1%1 + GmaT2 + -+ + AmpTn = bm

It is consistent, if it has at least one solution; it is inconsistent, if it does not have

any solution.

Using matrix multiplication, we can write the system as Ax = b

air G2 - Qip | |21 by
a1 Qg - Gon | | T2 by
Am1 Am2 tee Amn Tn bm

Then the augmented matrix for the system is

ail a2 -+ Qin b1

a21 a2 -+ G2pn bo
[A[b] =

Am1l Qm2  ** Gmn | bm

Definition 5.1.1. In a matrix, if there is a row containing a nonzero entry then
the leftmost nonzero entry is called the leading coefficient (or pivot) of that row.
A matrix is said to be in reduced row echelon form, if

1. all of the leading coefficients are equal to 1.

2. the leading coefficient in each row is to the right of the leading coefficient
of the row above.

3. in every column containing a leading coefficient, all of the other entries in
that column are zero.
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The first two conditions imply that the lower left part of the matrix consists of
zeros, and the zero rows are located at the bottom of the matrix.

There are three types of elementary row operations we can apply to a ma-

trix:

1. Exchange R; and R;:

2. Replace R; with kR;:

— Ri — AP — kRZ —

3. Replace R; with kR; + R;:

To solve a system Ax = b,

1. apply elementary row operations to the augmented matrix for the system

a1 a2 @13 Q14 a5 Gie | b1
[A|b] _ a1 Qg2 G23 G4 Az Qo6 | Do
as; a3z a3z azqy ass ase | bs
(41 Q42 Q43 Q44 Q45 Qa6 | by
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2. to obtain [rref(A)|b’]

01 = 0 0 =|b

1 bl

[rref(A)|b'] = 000 0 |t
0000 1 *|b,
00000 08,

3. Note that elementary row operations do not change the solution set of the
associated system, i.e., two systems Ax = b and rref(4)x = b’ have the
same set of solutions.

4. Solve the simplified system rref(A) x = b’. Write solutions using free vari-
ables for x; corresponding to columns without leading coefficients.

Remark 5.1.2. Let Ax = b be a consistent system. Observe that

the number of pivots in rref(A)
+ the number of free variables in the solution

= the number of columns of A.

Example 5.1.3.
1+ w2 +223=9

21 +4x9 — 33 =1
3£E1 +61’2 — 51’3 =0

Apply elementary row operations to [A[b] to obtain [rref(A)|b’]
11 2|9 1 0 01
2 4 -3]1 ~ 0 1 0|2
3 6 =510 0 0 1|3
We solve rref(A)x = b’ to conclude that
T 1
To| = |2
T3 3

Example 5.1.4.
I172x27 $3+31‘4:0

—2x1 + 429 + bxs —bry =3
3x1 — 629 — 623 + 8Ty = 2
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Applying elementary row operations to [A|b] to obtain

1 -2 0 10/3]1
[rref(A)p'l=|10 0 1 1/3 |1
0O 0 O 0 5
From the last row, we conclude that this system is inconsistent.
Example 5.1.5.
3x9 — 6x3+ 6x4 + 45 = —5
3x1 — Txo + 8xr3 —dry +8x5 =9
3x1 — 929 + 1223 — 924 + 625 = 15
Applying elementary row operations to [A|b] we obtain
1 0 -2 3 0] —-24
[rref(A)p]=10 1 -2 2 0| -7
00 0 01 4

Solving the system associated with this, we have

T 2x3 — 3x4 — 24 2 -3 —24

To 203 +2x4 — 7 2 2 7

x3| = x3(=s) =s|1|+t|0|+] O

Ty z4(=1) 0 1 0
Example 5.1.6.

2rx1 + 4xo — 2x3 + 224 + 45 = 2
1+ 2x9 — x3+ 214 =4
3x1+ 6x0 — 223+ x4 +925=1
5x1 + 10xo — 4x3 + 5xy + 925 = 9
Applying elementary row operations to [A|b], we obtain

2
[rref(A)|b] =

o o o R
o o = o
o = o o
[
NI
o W ok N

0
0
0
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Solve the system associated with this matrix to obtain

T —2x9 — 3x5 + 2 -3 —2 2
T z2(=9) 1 0 0
r3| = r5+4 =s| 0|+t |-1|+ |4
Ty 205 4+ 3 0 2 3
Ts x5(=1) 0 1 0
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52 Ax=Dbintermsof L,

Let Abe am x n matrix over F'and b € F™. Recall that the map
LA:Fn—>Fm, LA(X):AX

is a linear transformation.

Theorem 5.2.1. Let A be a m x n matrix over F. The following are equivalent.
1. A system of linear equations Ax = b is consistent.
2. b is in the image of the map L 4

b € imLy,.

3. b is in the subspace of F™ spanned by the columns A; of A
b € Span({4i, ..., An}).

Proof. O

Corollary 5.2.2. As a subspace of F'™,
imLy = Span({4i,...,4,}).

Corollary 5.2.2 also follows from Proposition 3.2.3, since the columns of A are
the image of the elementary basis £ = {ei,...,e,} of F” under L 4.

La(ej) = A

For this reason, the image of the linear transformation L4 is often called the
column space of A and denoted by Col(A).
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5.3 Homogeneous systems

A system of linear equations Ax = b is called homogeneous, if b = 0.

Proposition 5.3.1. The solution set of a homogeneous equation Ax = 0 is exa-
clty the kernel of the linear transformation L 4.

kerLo = {x€ F": Ax=0}.

For this reason, the kernel of the linear transformation L 4 is often called the
null space of A and denoted by Null(A).

Proposition 5.3.2. Let x, be a solution to a system Ax = b. Every solution to
Ax = b is of the form
X = Xp +Xp

for some x;, € Null(A).

Proof. Let x be a general solution to Ax = b. Then,
Ax —x,) = Ax— Ax, =b —b =0,
and thus x — x,, € Null(A4). O

Example 5.3.3. Find a basis of the solution space to each of the following homogeneous
systems.

r1+ 29+ 2x3=0
1. 2x1 +4x5 — 3x3 =0
3:171+6£L’2*5$3:0

3ry — 6x3+ 614 + 425 =0
2. 3x1 — Txo+ 8x3 —dxry +8x5 =0

3r1 — 929 + 1203 — 924 + 625 =0
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2x1 + 4xo —2x3+ 214 + 425 =0

1+ 229 — 13+ 214 =0
3rx1+ 6x0 — 223+ x4+ 925 =0
5x1 + 10xo — 43 + 524 + 925 = 0

57

Remark 5.3.4. Let us define the rank and nullity of a matrix A by the rank and
nullity of the linear transformation L 4, i.e., the dimensions of im L 4 and ker L 4
respectively.

1. Observe that in the solution to Ax = 0, the vectors multiplied by free
variables form a basis of the solution space. Thus,

the nullity of A = dimker L4 = dim Null(A4)

= the number of free variables in the solution to Ax = 0.

2. Then using the observation in Remark 5.1.2 with Theorem 3.3.1 applied to
Ly,

the rank of A = dimim L 4 = dim Col(A)
= the number of pivots in rref(A).

The rank of a matrix A is often defined by the number of pivots in rref(A).
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6.1 Matrix inverse

Recall that a n x n matrix A is invertible, if there exists a n x n matrix X such that
XA=1, and AX = I,.
We write A~! for X and call it the inverse of A (Definition 4.2.5).

7~

Proposition 6.1.1. Let A be a n x n matrix.
1. If A is invertible then its inverse is unique.
2. If Ais invertible and X A = I, then AX = I,,. Therefore, X = A~ 1.

3. If Ais invertible and AX = I,, then XA = I,,. Therefore, X = A~ 1.

Proof. (1) Let X and X’ be inverses of A. Then, by multiplying AX = I,, by X',
X'(AX) = X'I,,
(X'A)X = X'.
Then, using X' A = I,,, we conclude that X = X".
(2) By multiplying XA = I,, by 4,

A(XA) = AL,

(AX)A = A.
Then, by multiplying A~!, we obtain ((AX)A)A~! = AA~! and thus AX =
I,. O

Proposition 6.1.2. Let A and B be n x n matrices.

1. If A is invertible then its inverse A~! is invertible and
(AH = A
2. If A and B are invertible then their product AB is invertible and
(AB)™' =B7'A™%

3. If A is invertible then its transpose AT is invertible and
(AT)—I _ (A_I)T.
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Proof. (1) From the definition of A~1,
AT'A=AA4"1 =1,
and it shows that A is the inverse of A~!. (2) Note that
(BT'A Y (AB) = (AB)(B™*A™Y) =1,,.
(3) Using (XY)T =YTXT,
(A NHTAT = (AA YT =1,, and AT(AHT = AT =1,.

Proposition 6.1.3. A n x n matrix A is invertible if and only if the linear trans-
formation
Ly:F"— F" x— Ax

is bijective.

Proof. If a n x n matrix A is invertible then it is straightfoward to verify that the
map defined by

Ly :F" 5 F", x— A 'x
is the inverse map of L 4. Therefore, L 4 is bijective.

Conversely, assume that the linear transformation L 4 is bijective and Lzl isits
inverse. Then Lzl is a linear transformation from F™ to F"*, and thus there is a
matrix B such that

L' :F" — F", xw Bx.
Then, the compositions L;l oLjand Ly o L;‘l are the identity map on F”, and

(BA)x =x and (AB)x =x

for all x € F, which implies that BA = I,, and AB = I,,. Therefore, the matrix
A is invertible. O
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Theorem 6.1.4. Let A be an x n matrix. The following are equivalent.
1. Ais invertible.
2. Themap Ly : F™ — F™ is bijective.
3. The nullity of L 4 is 0.
4. The rank of L 4 is n.
5. The number of pivots in rref(A) is n.
6. rref(A) = I,,.
7. The homogeneous system Ax = 0 has only trivial solution.
8. The columns of A are linearly independent.
9. For every b € F, the system Ax = b is consistent.

10. For everyb € F™, b € Col(A).

Proof. (1) < (2) by Proposition 6.1.3. Note that (3) holds if and only if L4 is
injective and (4) holds if and only if L 4 is surjective. Therefore, (2) holds if and
only if both (3) and (4) hold. We have (3) < (4) by the rank-nullity theorem.
Then use Remark 5.3.4 to verify that

4) e (B)e(6), B)e(MHe (), and (4) < (9) < (10).

O

rlr
o

Theorem 6.1.4
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2 ol A i ¢-= FH AL o] &5, FE A7} 27 2SS YLholgte o
oA, A9 7Hd S A9 Y4 (A);; B o] &5to] BT 4 5T (Theorem
6.4.2).
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6.2 Elementary matrices and A~

6.2.1 Elementary matrices

Elementary matrices are n x n matrices obtained by applying elementary row

operations to the identity matrix /,,. Note that the columns of I,, form the ele-
mentary basis {ej, ..., e, } of F" and the ith row of I,, is the transpose of e/ of the
ith column e; of I,,.

1. Exchange R; and R; in the identity matrix I,,:

- el - - e -
]TL = ~ E =
T T

2. Replace R; with kR; in the identity matrix I,
L,=| — e - ~ E=1] — kel —

3. Replace R; with kR; + R; in the identity matrix I,,:

If M’ is a matrix obtained by applying an elementary row operation to a n x ¢
matrix M then
M' = EM
where E is the elementary matrix obatined by applying the corresponding op-
eration to I,,. Then, rref(A) can be obtained by multiplying A by elementary
matrices (corresponding to elementary row operations) from the left hand side,

(Bl (Ba(Ey4)) - ) = rref(A)
(Ey - E2Ep)A = rref(A) (6.2.1)
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6.2.2 Computing A~!

Let P and @ be n x n matrices. Applying an elementary row operation to the
augmented matrix M = [P | Q] is equivalent to multiplying the corresponding
elementary matrix £ to M = [P | Q]. Then, itis

E[P|Q]=[EP | EQ].
Now), recall that a n x n matrix A is invertible if and only if rref(A) = I,,, which
is equivalent to say that there are elementary matrices F1, Es, ..., Ej such that
(By - B2 B)A = I,
Multiplying them to the augmented matrix [A | I,,], we obtain
(B ExEn) [A] L)
(B EaBy)A | (B - ExEy)ly]
[Ln | (B - E2E1)]
(I | B

Knowing that A is invertible and we have B such that BA = I,,, by Proposition
6.1.1 (or Proposition 6.2.3), we conclude that B = A~

Proposition 6.2.1. A n x n matrix A is invertible if and only if we can obtain
(I, | B] by applying elementary row operations to [A | I,,]. In this case,

B=A""'.

6.2.3 LU decomposition

In (6.2.1), we observed that there are elementary matrices E; such that
(Ek . EgEl)A = rref(A).

Note that all these elementary matrices are invertible.

Definition 6.2.2. An LU decomposition of a square matrix A is the product of
a lower triangular matrix and an upper triangular matrix that is equal to A

A=LU.
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6.2.4 Left and right inverses

In Proposition 6.1.1, we showed that, knowing that A is invertible, a left inverse
of A is indeed the inverse of A. Now, for later use, we show that the statement
still holds without the invertibility condition.

7

Proposition 6.2.3. Let A be a n x n matrix.

1. Thereis a n x n matrix N such that NA = I, if and only if Ax = b has
a solution for allb € F™.

2. A left inverse of a A is a right inverse of A. That is, if there isan X n
matrix N such that NA = I,, then AN = I,,. Thus, N = A~

3. Aright inverse of A is a left inverse of A. That is, if there is a n x n matrix
M such that AM = I,, then MA = I,,. Thus M = A~1.

Proof. (1) (=) Forallb € F", x = Nb is a solution to Ax = b. (<) Suppose that
there is no N satisfying NA = I,,. Then, because rref(A) can be obtained by mul-
tiplying A by elementary matrices (corresponding to elementary row operations)
from the left hand side,

(Bk(--- (Ea(ErA))---)) = rref(A)
(Eq--- E9Eq)A =rref(A)
we have rref(A) # I,. In this case, rref(A) contains a zero row and thus we can
find b € F" such that Ax = b is inconsistent.
(2) Suppose that there is N such that NA = I,,. Then, from statement (1), for
any b € F", there is x € F"" such that Ax = b. By multiplying Ax = b by IV,
N(Ax) = Nb
(NA)x = Nb,
and thus x = Nb. This shows that
b = Ax = A(Nb) = (AN)b.
Writing N’ for the product AN, we have b = N'b for all b € F™. This shows

that N/ = I,, and thus AN = I,,. From NA = AN = I,,, we conclude that A is
invertible and N = A~
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(3)If AM = I,, then MT AT = I,,. Thus, by statement (2), AT is invertible and
its inverse is MT. Then, by Proposition 6.1.2, A = (AT)T is invertible and its
inverseis M = (M7T)T. O
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6.3 Determinant

The determinant is a function defined on the set of square matrices
det: M, (F) — F, A det(A).
It can be considered a function of the rows of a matrix:
- R, -
det(A) = det :
R, -
where R, = Ry (A) is the kth row of A. Similarly, the determinant can be con-
sidered a function of columns of a matrix.

Let us begin with the determinant of 1 x 1 and 2 x 2 matrices:

det {a} =a and det [a Z} = ad — bc.
c

Definition 6.3.1 (Row expansion). We define the determinant det(A) of a
square matrix A = (a;;) € M, (F) inductively as follows.

1. For A = (a) € M;y(F), det(A) = a.

2. Letn > 2. Foreach1l <1¢<mn,
det(A) = > (~1)"a,; det(AY)
j=1
where A" is the (n — 1) x (n — 1) matrix obtained by erasing the ith row
and jth column of A.

It turns out that the formula of det(A) provides the same value for all i. In
Proposition 6.3.4, we will give a formula which does not involve «.

7~

Lemma 6.3.2. 1. For n > 1, the determinant of the identity matrix I,, is
one.
det(I,) = 1.

2. If any two rows in A are exchanged then the sign of the determinant
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changes. That is, as a function of the rows of a matrix, the determinant
is alternating.

det : = —det

3. As a function of the rows of a matrix, the determinant is multilinear, that
is,

det | — RZ+R; —| =det |- R, - +det | — R; =

det - aR; - = adet — R, -

forall R;, R, and o € F.

69

Proof. Use mathematical inductionon n. See, for example, Theorem 4.3 in Fried-

berg (5th edition).

O

Let £ = {ey, ..., e, } be the elementary basis of F"". Using Lemma 6.3.2, we can

show that as a function of the rows of a matrix
det : =
T

in

Then, for a permutation o € &,

1 if {ityeyin) = {1, .0}

0 otherwise.

1 if o is even

-1 ifoisodd

det : =



70 6 INVERTIBLE MATRIX

Here, o is even or odd, if we need even or odd number of transpositions (ex-
changes of two elements) respectively to obtain (1,2, ...,n) from (o(1), ..., o(n)).
It is known that this parity is well-defined regardless of actual transpositions we
use. Now, let us define the sign (or the signature) of o by
e
sgn(o) = det
T

— eo’(n) —

Then, it is immediate to see that sgn(c~!) = sgn(o).

Lemma 6.3.3. Let R, = Ry (A) be the kth row of a matrix A. For any permu-
tation o € G,

- Roqy - - R -

— Ry - - Ry —
det ) = sgn(o) det )

- Ra(n) - - R, -

We remark that there is another way of computing sgn(c): let us call a pair
(i,7) the inversion of o, if i < j and ¢ (i) > o(j). Writing inv(c) for the number

of inversions of o, it is known that

sgn(o) = (=1)mv@),

Proposition 6.3.4. The determinant of A = (a;;) € M, (F) is

dEt(A) = Z sgn(o) A1,6(1) """ On,o(n)-
oeS,

Proof. The ith row of Ais R; = 22;1 aij e}", Then using the mutilinearity of the
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determinant map shown in Lemma 6.3.2,

n n
det(Rl, ,Rn) = det Z al,jle;‘q, ceny Z anyjne;’-rn

Jji=1 Jn=1

n n
B T T
— E e E det (afljjlejla"')anﬂnejn)

Ji=1 Jn=1
n n
— T T
= Z te Z 1,5, - Qn 5, det (ejl, . ejn)
Jji=1 Jn=1

= Z sgn(o)ay j, - Gn.j, where o (k) = ji, for all k.

oceG,
O
Theorem 6.3.5. For every square matrix A = (a;;) € My (F),
det(AT) = det(A).
PTOOf. Let AT = (blj) thus bij = Qjj-
det(AT) = Z Sgn(g)bl,a(l) e bn,a(n)
oeG,
= Z Sgn(a)aa(l),l o bo(n),n
cEG,
= Z Sgn(o-il)al,afl(l) ©Qpo—1(n)
o~ les,
= det(4).
O

Therefore, we can think of the determinant is a function of the columns of a
matrix

| |
det(A) =det |C; --- C,

| |
where Cy, = Ci(A) is the kth column of A.
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Corollary 6.3.6. 1. (Column expansion). Foreach 1 < j < n,

det(A) = i(—niﬂ‘% det(A™).

i=1
2. As a function of the columns of a matrix, the determinant is alternating.

3. As a function of the column of a matrix, the determinant is multilinear.

4. For any permutation o € G,
| | | o |
det OU(I) 00(2) ce Oo(n) = sgn(a) det Cl 02 ce Cn
| | | o |

Recall that the trace map is compatible with matrix addition (Example 3.1.2).
Now we show that the determinant map is compatible with matrix multiplica-
tion.

Theorem 6.3.7. For A, B € M,,(F),
det(AB) = det(A) det(B).

Proof. For a matrix M, write M for the jth column of M. The jth column of the
product AB is

Zk alkbkj a1l a2 Q1n
>k A2kbr; ao1 a2 aon "
(AB); = : by | by | b | | =D b
. . . i=1
Zk ankbkj anl an2 Anpn

See also (4.2.2). Now considering the determinant as a function of columns of a
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matrix,
det(AB) = det (Z bil,lAi17 ceey Z bin,nAiTL)
i1=1 in=1
= o biyaccbi,ndet(As ., A
=1 =1
= Z bg(l)J cee bg(n)’nsgn(a) det(Al, ey An)
oES,,
= det(4) Z 5g1(0)bo(1),1 Do (n),n
LAY
= det(A) det(B).
O
Corollary 6.3.8. Let A € M, (F).
1. If A is invertible then det(A) # 0 and
1
—1y __
det(A™) = det(A)’
2. det(A) = 0 if and only if det(rref(A)) = 0.
Proof. (1) By applying Theorem 6.3.7 to AA™! = I,,,
det(AA™!) = det(A) det(A™1) = 1.
(2) By Theorem 6.3.7, if E; are elementary matrices such that
Ey - EyE1 A =rref(A)
then
det(Ey) - - - det(Ey) det(E;) det(A) = det(rref(A)).
By noting that det(E;) # 0, we have det(A) = 0 if and only if det(rref(A4)) =
0. O

The number of pivots in rref(A) is n if and only if rref(A) = I,,, in which case
det(rref(A)) = 1 and thus det(A4) # 0. If the number of pivots in rref(A) is strictly
less than n then rref(A) contains a zero row and therefore det(rref(A)) = 0. This
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discussion combined with Theorem 6.1.4 (1) < (6) shows that the converse of
Corollary 6.3.8 (1) is also true. We will give a more constructive proof in Theorem
6.4.2.

Proposition 6.3.9. If two square matrices A and B are similay, i.e., there is an
invertible matrix Q such that B = Q' AQ then

tr(A) = tr(B) and det(A) = det(B).

Proof. First we note that tr(XY) = tr(Y X) for any n x n matrices X and Y.

r(XY) = Y (XV)i =3 Y (X) =3 D (V)r(X)ax = tr(YX).

i=1 k=1 k=1 i=1
Then, tr(B) = tr(Q 1 AQ) = tr(AQQ ') = tr(A). Next, using Theorem 6.3.7,
det(B) = det(Q ' AQ) = det(Q ') det(A) det(Q)
= det(Q) ' det(A) det(Q) = det(A).
O

We define the trace and determinant of a linear transformation T : V. — V
by the trace and determinant of the matrix [T']z with relative to any basis B. By
Proposition 6.3.9, they are well defined regardless of .

The determinant a 2 x 2 real matrix A = [vl v2] gives the “signed” area of a

T T
paralleogram formed by two vectors v; = [a c} and vy = {b d} in R%:

b
det [a ] .
d
The determinant a 3 x 3 real matrix A = {vl Vo v3} gives the “signed” volumn

T
of a parallelepiped formed by three vectors v; = {ai b; ci] in R3:

a; az as
det by by b3
C1 C2 C3

Note that it is the box product (or scalar triple product) given in Calculus.
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Considering the corresponding linear transformation
Ly :R" — R", X — Ax

the determinant of A
o |
det(A) =det [A; Ay --- A,| whereA; = Ly(e;)
. |

measures how much the map L 4 deforms the unit cube formed by ey, ..

" en.

75
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6.4 Cramer’s rule and A~!

Let us consider a system of n linear equations for n unknowns

Ax =Db.

Theorem 6.4.1. Let A be a n x n matrix with nonzero determinant. Then, for
any b € F", the system of linear equations Ax = b has a unique solution x

whose ith entry is
. _ det(4i(b)
’ det(A)
where A;(b) is the matrix obtained by replacing the ith column of A with b.

Proof. Let B be the matrix obtained from I,, by replacing ith column by x. Note
that Ae; is the ith column of A. Then, the product AB is

| | | | | |
A el ... x .. en = Al DR Ax ... An

Then, after replacing Ax by b, take the determinant to obtain
det(A) det(B) = det(A;(b)).

The statement follows from det(B) = z;. O

Theorem 6.4.2. A square matrix A is invertible if and only if det(A) # 0.

Proof. (=) This is the first statement of Corollary 6.3.8. («=) Let Abean x n
matrix with nonzero determinant. By Theorem 6.4.1, the systems Ax = e; have
unique solutions

Ax; = ey, Axg = eo, ..., Ax, = e,.

Then, we have
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Therefore, by Proposition 6.2.3, the inverse of A is

Theorem 6.4.3. Let A bean x n matrix. If det(A) # 0 then the (i, j) entry of
A~ bis . .
(—1)t7 det(A7?)
det(A)
where A is the (n — 1) x (n — 1) matrix obtained from A by erasing the jth
row and the ith column.

Proof. By solving Ax; = e; for 1 < j < n, we can find a n x n matrix X such that
AX = I,. Then, the ith entry of the vector x; is, by Cramer’s rule,
det Al (e]‘)
Tij = 77
det(A)

The statement follows from the observation

det A;(e;) = (—1)"7 det(A7").

Example 6.4.4.

a b1 [d b
c d ad—bc |—c a

[ a2 ass|  |aiz az|  |aiz ans] |
agz2 ass azz ass a2 Aa23
—1
le 2 s 1 _|a21 ass ain @i3|  |ann a3
2 ez O - det(A) as1 433 asy ass a1 a3
a3y as2 ass
a1 a2 @11 a12 ail a2
L [@31 @32 asp as2 asy asz| |
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