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Chapter 1

Vector space

벡터와 벡터공간을 정의합니다. 벡터공간의 특별한 부분집합으로 부분공간을 정
의하고, 부분공간의원소들을표현하는방식에대해알아봅시다.
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2 1 VECTOR SPACE

1.1 Definition and examples

Once and for all, we let F denote the set of real numbers or the set of complex
numbers.

Definition 1.1.1. A vector space V over F is a set with addition and scalar
multiplication:

V × V → V, (v, w) 7→ v + w

F × V → V, (k, v) 7→ kv

such that

1. for all v, w ∈ V , v + w = w + v

2. for all u, v, w ∈ V , (u+ v) + w = u+ (v + w)

3. there is a zero vector, denoted by 0V , in V such that

v + 0V = 0V + v = v for all v ∈ V .

4. for each v ∈ V , there is an additive inverse w of v in V such that

v + w = w + v = 0V .

5. for all a, b ∈ F and v ∈ V , (a+ b)v = av + bv.

6. for all a ∈ F and v, w ∈ V , a(v + w) = av + aw.

7. for all a, b ∈ F and v ∈ V , (ab)v = a(bv).

8. for all v ∈ V , 1v = v.

Elements in a vector space are called vectors.

Lemma 1.1.2 (Cancellation law). Let x, y, z be vectors in a vector space V . If

x+ z = y + z

then x = y.
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Proposition 1.1.3.

1. Every vector space V has a unique zero vector 0V .

2. Every vector v ∈ V has a unique additive inverse.

Proof.

We will write −v for the additive inverse of v, and v − w for v + (−w).

Theorem 1.1.4. Let V be a vector space over F .

1. 0 v = v for all v ∈ V .

2. a 0V = 0V for all a ∈ F .

3. (−a)v = −(av) = a(−v) for all a ∈ F and v ∈ V .

In particular, for all v ∈ V , the additive inverse −v of v is equal to (−1) v.

Proof.

Example 1.1.5 (Vector spaces of matrices). A m×n matrix A over F is a rectangular
array of numbers in F with m rows and n columns.

A =


a11 a12 · · · a1n

a21 a22 a2n
...

. . .
...

am1 am2 · · · amn


Write (A)ij for the (i, j) entry of A. A m× n matrix A and a p× q matrix B are equal,
A = B, if m = p and n = q, and

(A)ij = (B)ij

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

The set Mmn(F ) of all m×n matrices over F with matrix addition A+B and scalar
multiplication cA defined by

(A+B)ij = (A)ij + (B)ij , (cA)ij = c(A)ij .
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is a vector space overF . We writeMn(F ) forMn,n(F ). Its zero vector is the zero matrix,
the m× n matrix all of whose entries are zero, and the additive inverse of A is a m× n

matrix B such that (B)ij = −(A)ij for all i, j.

Example 1.1.6 (Vector spaces of column vectors). Am×1matrix is called a column vector
of size m and a 1 × n matrix is called a row vector of size n. The set Fn of all column
vectors of size n whose entries are from F with the following operations is a vector space
over F . 

a1

a2
...
an

+


b1

b2
...
bn

 =


c1

c2
...
cn

 , k


c1

c2
...
cn

 =


kc1

kc2
...

kcn

 .

The zero vector is... the additive inverse of ... is ...

Example 1.1.7 (Vector spaces of functions). The set of functions from a set X to F

with function addition f + g and scalar multiplication kf defined by

(f + g)(x) = f(x) + g(x), (kf)(x) = kf(x)

is a vector space over F . Then, its zero vector is... the additive inverse of f is ...

Example 1.1.8 (Vector spaces of polynomials). The set P (m) of polynomials of degree
at most m with coefficients from F with polynomial addiion and scalar multiplication

(f + g)(x) =

m∑
i=0

(ai + bi)x
i, (kf)(x) =

m∑
i=0

(kai)x
i

is a vector space over F . The zero vector is... the additive inverse of f ∈ P (m) is ...
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1.2 Subspaces

Definition 1.2.1. A nonempty subset W of a vector space V over F is called a
subspace of V , if W is a vector space over F with the same addition and scalar
multiplication of V .

The vector space V itself and {0V } are subspaces of V . The subspace {0V } is
called the trivial subspace. We are interested in nontrivial proper subspaces of
V

{0V } ⫋ W ⫋ V.

Theorem 1.2.2. Let W be a subset of a vector space V over F . Then, W is a
subspace of V if and only if it satisfies the following conditions.

1. 0V ∈ W .

2. x+ y ∈ W for all x, y ∈ W .

3. kx ∈ W for all k ∈ F and x ∈ W .

Proof.

Example 1.2.3.

1. For any given k1, ..., kn ∈ F , the following set is a subspace of Fn.

W = {


a1

a2
...
an

 ∈ Fn :

n∑
i=1

kiai = 0 }.

2. The subsets of Mn(F ) consisting of

a) symmetric matrices: (A)ji = (A)ij for all i and j,

b) skew-symmetric matrices: (A)ji = −(A)ij for all i and j,

c) upper triangular matrices: (A)ij = 0 for all i > j,
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d) lower triangular matrices: (A)ij = 0 for all i < j,

e) diagonal matrices (A)ij = 0 for all i ̸= j

are subspaces of Mn(F ).

3. For any given α ∈ F , the following set is a subspace of P (m).

{ f(x) ∈ P (m) : f(α) = 0 }.

Proposition 1.2.4. The intersection of any subspaces of a vector space V is a
subspace of V .

Proof.
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1.3 Linear combinations

Definition 1.3.1. Let V be a vector space over F . A vector w ∈ V is a
linear combination of v1, v2, ..., vk, if there are a1, ..., ak ∈ F such that

w = a1v1 + a2v2 + · · ·+ akvk.

Theorem 1.3.2. Let S be a nonempty subset of a vector space V over F . The set
of all linear combinations of elements in S

Span(S) =

 ∑
finite sum

aivi : vi ∈ S, ai ∈ F


is the smallest subspace of V contanining S.

The vector space Span(S) is called the subspace of V spanned by S.

Proof. We claim that Span(S) is the intersection of all subspaces of V containing
S. Then, by Proposition 1.2.4, it is a subspace of V and any subspace containing
S should contain it as a subset.

Definition 1.3.3. Let W be a subspace of a vector space V . A spanning set of
W is a subset S of W such that

W = Span(S).





Chapter 2

Basis and dimension

벡터공간의 모든 원소를 선형조합 형태로 잘 표현해주는 벡터들의 집합인 기저에
대해공부합니다. 이를이용하여벡터공간의차원을정의합니다.

9
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2.1 Linear independence

Definition 2.1.1. Let V be a vector space over F . Vectors v1, v2, ..., vk ∈ V are
(or the set {v1, ..., vk} is) linearly dependent, if there are a1, a2, ..., ak ∈ F , not
all zero, such that

a1v1 + a2v2 + · · ·+ akvk = 0V .

An infinite subset of V is linearly dependent, if it contains a finite subset that is
linearly dependent.

Example 2.1.2. Let S = {v1, v2, ..., vk} ⊂ V .

1. If 0V ∈ S then S is linearly dependent.

2. If there is vj ∈ S such that
vj = a1v1 + · · ·+ aj−1vj−1 + aj+1vj+1 + · · ·+ akvk

for some ai ∈ F then S is linearly dependent.

Definition 2.1.3. Vectors v1, v2, ..., vk ∈ V are (or the set {v1, ..., vk} is)
linearly independent, if

a1v1 + a2v2 + · · ·+ akvk = 0V

implies that a1 = a2 = · · · = ak = 0. An infinite subset S of V is linearly
independent, if every nonempty finite subset of S is linearly independent.

Example 2.1.4. 1. In the vector space of continuous functions from [−π, π] to R, the
following set is linearly independent.

{ sin kx, cos ℓx : 1 ≤ k ≤ n, 0 ≤ ℓ ≤ m } .

2. In R4, the following vectors v1, v2, v3, v4 are linearly dependent

v1 =


1

0

−1

0

 , v2 =


1

0

−1

2

 , v3 =


1

1

−1

1

 , v4 =


0

−1

0

1


while v1, v2, v3 are linearly independent.
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Theorem 2.1.5. Let V be a vector space over F and S = {v1, v2, ..., vn} be
a subset of V . The set S is linearly independent if and only if every vector in
Span(S) can be written as a linear combination of vectors in S in a unique way.

Proof.
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2.2 Basis

Proposition 2.2.1. Let V be a vector space over F and S = {v1, ..., vk} be a
subset of V .

1. Let S be linearly independent. For any v ∈ V \ S, S ∪ {v} is linearly
dependent if and only if v ∈ Span(S).

2. Let S be a spanning set of V . For any v ∈ S, S \ {v} is a spanning set of
V if and only if v ∈ Span(S \ {v}).

Proof. (1) (⇒) Assume that S′ = S ∪ {v} is linearly dependent. Then, there are
coefficients, not all zero, such that

a1v1 + a2v2 + · · ·+ anvn + bv = 0V .

We note that b cannot be zero (if b = 0 then...). Therefore we have

v = (−a1/b)v1 + (−a2/b)v2 + · · ·+ (−an/b)vn.

This shows that v ∈ Span(S)
(⇐) Assume that v ∈ Span(S). Then,

v = a1v1 + a2v2 + · · ·+ anvn

for some coefficients ai ∈ F . This gives

a1v1 + a2v2 + · · ·+ anvn + (−1)v = 0V ,

which shows that S′ = {v1, ..., vn, v} is linearly dependent.
(2) Let S′ = S \ {v}.

Definition 2.2.2. Let V be a vector space over F . A subset B of V is a basis of
V , if it satisfies the following two conditions:

1. every finite subset {v1, ..., vk} of B is linearly independent, i.e. if

c1v1 + · · ·+ ckvk = 0V

then c1 = · · · = ck = 0.
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2. the set B spans V , i.e., for every vector v ∈ V there are a1, ..., ak ∈ F and
v1, ..., vk ∈ B such that

v = a1v1 + · · ·+ akvk.

Example 2.2.3. The set {Eab : 1 ≤ a ≤ m, 1 ≤ b ≤ n} is a basis of the vector space
Mmn(F ) where Eab is the m× n matrix such that

(Eab)ij =

1 if i = a and j = b,

0 otherwise.

Example 2.2.4. The elementary basis (or standard basis) for the vector space Fn of col-
umn vectors is

E = {e1 =



1

0

0
...
0


, e2 =



0

1

0
...
0


, . . . , en =



0

0
...
0

1


}.

Example 2.2.5. The set B = {1, x, x2, ..., xm} is a basis of the vector space P (m) of
polynomials of degree not more than m.

Let P be a property we want to investigate. A subset B of a set S is a maximal
P subset of S, if there is no P subset of S properly containing B, that is, if B′ is
a P subset of S and B ⊆ B′ then B′ = B.

Theorem 2.2.6. Let S be a spanning set of V . Then, a maximal linearly inde-
pendent subset of S is a basis of V .

Proof. Let B be a maximal linearly independent subset of S. To show that it is
a basis, it is enough to show that V = Span(B). Note that ⊇ is trivial. Now we
claim

S ⊆ Span(B).
If this is true then, since Span(S) is the smallest subspace containingS, Span(S) ⊆
Span(B). From the hypothesis V = Span(S),

V = Span(S) ⊆ Span(B)
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and we see that V ⊆ Span(B) and therefore V = Span(B).
Let us prove the claim. We need to show that for all v ∈ S, v ∈ Span(B). (i) if

v ∈ S is an element in B then it is clear that v ∈ Span(B). (ii) if v ∈ S \ B then
B ∪ {v} is linearly dependent (because of the maximality condition on B). Thus,
we can find some elements vi ∈ B and coefficients, not all zero, such that

k∑
i=1

aivi + cv = 0V .

In particular, c cannot be zero (why?). Therefore, v =
∑k

i=1(−ai/c)vi and this
shows that v ∈ Span(B).
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2.3 Dimension

Theorem 2.3.1 (Replacement theorem). Let V be a vector space over F and
B = {v1, ..., vn} be a basis of V . If a subset S = {w1, ..., wk} of V with k

elements is linearly independent then k ≤ n.

|S| ≤ |B|.

Proof. In order to derive a contradiction, suppose that k > n. Since B spans V ,
w1 ∈ S can be written as

w1 = a1v1 + a2v2 + · · ·+ anvn

with some a1, ..., an ∈ F . Since w1 ̸= 0V , not all aj are zero. After reindexing
them, if necessary, we assume that a1 ̸= 0. Then,

v1 = (1/a1)w1 − (a2/a1)v2 − · · · − (an/a1)vn

and we can check that the set obtained from B by replacing v1 with w1

B1 = {w1, v2, v3, ..., vn}

is a basis of V .
In a similar way, we can replace v2 in B1 with w2 to obtain a basis B2. Continue

these procedures until we obtain a basis

Bn = {w1, w2, ..., wn}.

Then since Bn spans V , wn+1 can be written as a linear combination of w1, ..., wn,
which contradicts to the assumption that S is linearly independent. Therefore,
k ≤ n.

Theorem 2.3.2. Let V be a vector space over F and B be a basis of V having
finitely many elements. Then, any other basis B′ of V contains finitely many
elements and

|B′| = |B|.

Proof. Using Theorem 2.3.1, since B is a basis and B′ is linearly independent,
|B| ≥ |B′|. Since B′ is a basis and B is linearly independent, |B| ≤ |B′|.
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Definition 2.3.3. The number of vectors in a basis B of a vector space V is called
the dimension of V .

dim V = |B|

Example 2.3.4.

1. The dimension of Mmn(F ) is mn.

2. The dimension of Fn is n.

3. The dimension of P (m) is m+ 1.

Theorem 2.3.5. Let W be a subspace of a vector space V .

1. dimW ≤ dimV .

2. If dimW = dimV then V = W .

Proof. (1) Find a basis {w1, ..., wk} of W . Then, since it is linearly independent in
V , k ≤ dimV by Theorem 2.3.1.

(2) Let dimW = dimV = n and BW be a basis of W . Suppose that W is a
proper subset of V . Then, we can find v ∈ V \W so that the following set with
n+ 1 elements

BW ∪ {v}

is linearly independent in V , which contradicts to Theorem 2.3.1.

Theorem 2.3.6 (Basis extension theorem). Let V be a vector space with
dimV = n and W be a subspace of V . If {v1, ..., vk} is a basis of W then
there are vectors vk+1, ..., vn ∈ V \W such that

B = {v1, v2, ..., vk, vk+1, ..., vn}

is a basis of V .
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Proof. From Proposition 2.2.1, if we choose vk+1 ∈ V \ Span({v1, ..., vk}) then

dim Span({v1, ..., vk, vk+1}) = k + 1.

Repeat this procedure until we obtain W = Span({v1, ..., vn}). Since W is a sub-
space of V with dimension equal to dimV , we have W = V and thus B is a basis
of V .





Chapter 3

Linear transformation

두벡터공간을잘연결해주는함수선형변환을정의하고,선형변환에의해주어지는
정의역과 공역의 부분공간을 공부합니다. 두 벡터공간이 서로 동형이라는 것을
정의하고, 이를이용하여유한차원벡터공간들을분류합니다.

19
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3.1 Maps between vector spaces

Definition 3.1.1. Let V and W be vector spaces over the same F . A map T

from V to W is a linear transformation, if it satisfies

T (v1 + v2) = T (v1) + T (v2) and T (kv) = kT (v)

for all v1, v2, v ∈ V and k ∈ F .

Example 3.1.2. 1. F 2 → F 2, [
x

y

]
7→

[
ax+ by

cx+ dy

]
.

2. P (m) → P (m), f 7→ f ′.

3. P (m) over R → R, f 7→
∫ b

a
f(x) dx.

4. The identity map IV : V → V , v 7→ v.

5. The zero map T0 : V → W , v 7→ 0W .

6. Mmn(F ) → Mnm(F ) sending A to its transpose AT , the n×m matrix such that
(AT )ij = (A)ji for 1 ≤ i ≤ m, 1 ≤ j ≤ n.

7. Mn(F ) → F sending A to its trace tr(A) =
∑n

i=1(A)ii.

Proposition 3.1.3. Let V and W be vector spaces over the same F and T : V →
W be a linear transformation.

1. T (0V ) = 0W .

2. For every v ∈ V , the inverse of v in V maps to the inverse of T (v) in W ,
i.e.,

T (−v) = −T (v) for all v ∈ V .

3. T (
∑n

i=1 aivi) =
∑n

i=1 aiT (vi) for all ai ∈ F and vi ∈ V .

Proof.
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Proposition 3.1.4. Let V and W be vector spaces over the same F and B =

{v1, ..., vn} be a basis of V . For any vectors w1, ..., wn in W , there is a unique
linear transformation

T : V → W such that T (vj) = wj

for j = 1, 2, ..., n.

Proof.

Let V and W be vector spaces over the same F . We write HomF (V,W ) for the
set of all linear transformations from V to W .

Proposition 3.1.5. The set HomF (V,W )with the following addition and scalar
multiplication is a vector space over F . For T, S ∈ HomF (V,W ) and k ∈ F ,
T + S and kT are the maps from V to W defined by

(T + S)(v) = T (v) + S(v) and (kT )(v) = k(T (v)).

for all v ∈ V .

Proof.

Then, the zero vector in HomF (V,W ) is the zero map (Example 3.1.2), and the
additive inverse of T ∈ HomF (V,W ) is −T : V → W defined by

(−T )(v) = −(T (v)) for all v ∈ V .

Proposition 3.1.6. Let U , V , and W be vector spaces over the same F . If S :

U → V and T : V → W are linear transformations then their composition

T ◦ S : U → W

is also a linear transformation.
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Proof. For u1, u2, u ∈ U and k ∈ F ,

(T ◦ S)(u1 + u2) = T (S(u1 + u2)) = T (S(u1) + S(u2))

= T (S(u1)) + T (S(u2)) = (T ◦ S)(u1) + (T ◦ S)(u2).

(T ◦ S)(ku) = T (S(ku)) = T (kS(u))

= kT (S(u)) = k(T ◦ S)(u).
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3.2 Subspaces associated with T

Let us recall some terminologies. Let f be a function from X (domain) to Y

(codomain). For subsets A ⊆ X and B ⊆ Y , the image of A under f and the
preimage of B under f are

f(A) = {f(x) ∈ Y : x ∈ A} and f−1(B) = {x ∈ X : f(x) ∈ B}

respectively. When A = X , we often write im f for f(X) and call it the range or
image of f .

Theorem 3.2.1. Let T : V → W be a linear transformation. Then, the kernel
and image of T

kerT = {v ∈ V : T (v) = 0W } and imT = {T (v) : v ∈ V }

are subspaces of V and W respectively.

Proof. (1) We need to show that i) 0V ∈ kerT , ii) v1+v2 ∈ kerT for v1, v2 ∈ kerT ,
and iii) kv ∈ kerT for v ∈ kerT and k ∈ F .

(2) We need to show that i) 0W ∈ imT , ii) v1 + v2 ∈ imT for v1, v2 ∈ imT , and
iii) kv ∈ imT for v ∈ imT and k ∈ F .

We remark that the kernel and image of T are also called the null space and
range of T , and often denoted by N(T ) and R(T ) respectively.

Theorem 3.2.2. Let T : V → W be a linear transformation. The map T is
one-to-one if and only if its kernel is trivial, i.e.,

kerT = {0V }.

Proof. (⇒) Since T (0V ) = 0W (Proposition 3.1.3), 0V ∈ kerT . Since T is one-to-
one, if T (v) = 0W = T (0V ) then v = 0V . Thus, kerT = {0V }.

(⇐) Suppose T (v) = T (v′). Then, T (v)−T (v′) = 0W and thus T (v−v′) = 0W ,
which implies v − v′ ∈ kerT . Since kerT = {0V }, we have v − v′ = 0V and
therefore v = v′.
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Proposition 3.2.3. Let T : V → W be a linear transformation. If S =

{v1, ..., vn} spans V then

T (S) = {T (v1), ..., T (vn)}

spans imT .

Proof. Need to show that

Span({T (v1), ..., T (vn)}) = imT.

(⊆) If w is an element in LHS then it is a linear combination

w = a1T (v1) + · · ·+ anT (vn)

for some a1, ..., an ∈ F . Then, w = T (
∑

aivi) and thus it is an element in imT .
(⊇) Let w ∈ imT . Then, w = T (v) for some v ∈ V and v =

∑
aivi. This shows

that

w = T (v) = T

(
n∑

i=1

aivi

)
=

n∑
i=1

aiT (vi) ∈ Span({T (v1), ..., T (vn)}).
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3.3 Rank-nullity theorem

The nullity of a linear transformation T is the dimension of the kernel (or null
space) of T , and the rank of T is the dimension of the image (or range) of T .

NullityT = dim kerT, RankT = dim imT.

Theorem 3.3.1 (Rank-Nullity theorem, Dimension theorem). Let V andW
be vector spaces over the same F and T : V → W be a linear transformation. If
the dimension of V is finite then it is the sum of the rank of T and the nullity of
T .

dimV = RankT + NullityT.

Proof. We let dimV = n and NullityT = k. We assume that 0 < k < n. One can
consider the other cases k = 0 and k = n separately.

Suppose that {v1, ..., vk} is a basis of kerT . Then, by Theorem 2.3.6, we can
find vectors vk+1, ..., vn ∈ V \ Span({v1, ..., vk}) to form a basis of V

B = {v1, v2, ..., vk, vk+1, ..., vn}.

We claim that S = {T (vk+1), ..., T (vn)} is a basis of imT .
(i) First, let us show that S spans imT . Since B spans V and T (vi) = 0W for

1 ≤ i ≤ k, by Proposition 3.2.3 ,

imT = Span({T (v1), ..., T (vk), T (vk+1), ...T (vn)})

= Span({T (vk+1), ...T (vn)}).

(ii) To prove that S is linearly independent, suppose that for some bi ∈ F ,
n∑

i=k+1

biT (vi) = 0W .

Since T is a linear transformation, we have T
(∑n

i=k+1 bivi
)

= 0W , and thus∑n
i=k+1 bivi ∈ kerT . Since {v1, ..., vk} is a basis of kerT , there are ci ∈ F such

that
n∑

i=k+1

bivi =

k∑
i=1

civi
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and thus

(−c1)v1 + · · ·+ (−ck)vk + bk+1vk+1 + · · ·+ bnvn = 0V .

Since B is a basis, we have bi = 0 for all i.

Corollary 3.3.2. Let V and W be finite dimensional vector spaces over the same
F and T : V → W be a linear transformation. If dimV = dimW then the
following are equivalent.

1. T is one-to-one.

2. T is onto.

3. The rank of T is equal to dimV .

Proof.
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3.4 Isomorphism

Definition 3.4.1. Let V and W be vector spaces over the same F .

1. A map T : V → W is an isomorphism, if it is a bijective linear transfor-
mation.

2. If there is an isomorphism from V to W then we say V is isormorphic to
W and write

V ∼= W.

Example 3.4.2. 1. For any permutation σ of {1, 2, ..., n}, the following map is an
isomorphism.

Tσ : Fn → Fn,


x1

x2

...
xn

 7→


xσ(1)

xσ(2)

...
xσ(n)

 .

2. The map Mmn(F ) → Mnm(F ) defined by A 7→ AT is an isomorphism (Exam-
ple 3.1.2). In particular, the vector space Fn = Mn1(F ) of column vectors is
isomorphic to the vector space M1n(F ) of row vectors.

Theorem 3.4.3. Vector space isomorphism is an equivalence relation on any
collection of finite dimensional vector spaces over the same F .

Proof. We need to show that

1. for any V , the identity map IV : V → V is an isomorphism.

2. if T : V → W is an isomorphism then its inverse map T−1 : W → V is also
an isomorphism.

3. if S : U → V and T : V → W are isomorphisms then their composition
T ◦ S is an isomorphism from U to W (Proposition 3.1.6).
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As a consequence of this result, a collection of finite dimensional vector spaces
can be partitioned into equivalence classes. We expect that two vector spaces in
the same equivalence class share many important properties.

Theorem 3.4.4. Let V and W are finite dimensional vector spaces over the same
F . If V ∼= W then dimV = dimW .

The converse of Theorem 3.4.4 is also true. See Theorem 4.1.4.

Proof. Let T : V → W be an isomorphism and B = {v1, ..., vn} be a basis of V .
We want to show that

{T (v1), ..., T (vn)}

is a basis of W .
(1) Since T is surjective, for every w ∈ W there is v ∈ V such that w = T (v).

Then, v =
∑n

i=1 aivi and

w = T (v) = T

(
n∑

i=1

aivi

)
=

n∑
i=1

aiT (vi).

Therefore {T (v1), ..., T (vn)} spans W (cf. Proposition 3.2.3).
(2) To show that it is linearly independent, suppose

∑n
i=1 aiT (vi) = 0W . Then,

since
n∑

i=1

aiT (vi) = T (

n∑
i=1

aivi),

the vector
∑n

i=1 aivi is in the kernel of T . Since T is injective, kerT = {0V } and
thus

n∑
i=1

aivi = 0V .

This implies that all ai are zero because {v1, ..., vn} is linearly independent.
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4.1 Coordinate vector of v

Let V be a vector space over F . Once a basis B = {b1, ..., bn} of V is given, every
v ∈ V can be expressed as a linear combination of v1, ..., vn in a unique way:
there are unique a1, ..., an ∈ F such that

v =

n∑
i=1

aivi.

Then the coordinate vector of v with relative to B is the column vector

[v]B =


a1

a2
...
an

 . (4.1.1)

Note that the order of elements in B is important in this context.

Proposition 4.1.1. Let V be a vector space over F and B = {v1, v2, ..., vn} be
a basis of V . The map sending v to its coordinate vector [v]B relative to a basis B

[ ]B : V −→ Fn, v 7→ [v]B

is an isomorphism.

Proof. (1) For any element

x =


x1

...
xn

 ∈ Fn,

we have v =
∑n

i=1 xivi ∈ V and it satisfies [v]B = x. This shows that the map [ ]B

is onto. To show that the map [ ]B is one-to-one, for any two vectors v, v′ ∈ V we
want to show that [v]B = [v′]B implies that v = v′. Let us write v and v′ as linear
combinations as

v =

n∑
i=1

aivi and v′ =

n∑
i=1

a′ivi.

If [v]B = [v′]B then ai = a′i for all i and

v − v′ = v + (−1)v′ =

n∑
i=1

aivi +

n∑
i=1

(−a′i)vi =

n∑
i=1

(ai − a′i)vi =

n∑
i=1

0 vi = 0V .
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Therefore v = v′.
(2) To show that it is a linear transformation, we need to check

[v + v′]B = [v]B + [v′]B and [kv]B = k[v]B

for all v, v′ ∈ V and k ∈ F . For v, v′ ∈ V , we can find a1, ..., an, a
′
1, ..., a

′
n ∈ F

such that

v =

n∑
i=1

aivi and v′ =

n∑
i=1

a′ivi.

Then, from v + v′ = (
∑n

i=1 aivi) + (
∑n

i=1 a
′
ivi) =

∑n
i=1(ai + a′i)vi,

[v + v′]B =


a1 + a′1

...
an + a′n

 =


a1
...
an

+


a′1
...
a′n

 = [v]B + [v′]B.

Also, for every k ∈ F and v ∈ V , we have kv = k(
∑n

i=1 aivi) =
∑n

i=1(kai)vi, and
thus

[kv]B =


ka1

...
kan

 = k


a1
...
an

 = k[v]B.

Theorem 4.1.2. Every n-dimensional vector space V over F is isormorphic to
Fn.

V ∼= Fn

Proof. Choose any basis B of V . The map [ ]B gives an isomorphism from V to
Fn.

Example 4.1.3.

1. Mmn(F ) ∼= Fmn.

2. P (m) ∼= Fm+1.

3. The space of n× n symmetric matrices over F is isomorphic to Fn(n+1)/2.

4. The space of n× n skew-symmetric matrices over F is isomorphic to Fn(n−1)/2.



32 4 COORDINATIZATION

Theorem 4.1.4. Let V and W be finite dimensional vector spaces ove the same
F . Then, dimV = dimW if and only if V ∼= W .

Proof. (⇐) is given in Theorem 3.4.4. Now we prove (⇒). Let dimV = dimW =

n, and fix bases B and C for V and W . We have isomorphisms (Proposition 4.1.1)

[ ]B : V → Fn, [ ]C : W → Fn

Then, [ ]−1C ◦ [ ]B : V → W is an isomorphism and thus V ∼= W .
To give a more explicit isomorphism, let B = {v1, ..., vn} and C = {w1, ..., wn}

be bases of V and W respectively. Then, there is a unique linear transformation
such that

T : V → W, T (vj) = wj for 1 ≤ j ≤ n

by Proposition 3.1.4 and it is surjective by Proposition 3.2.3. To show that it is
injective, we compute the kernel of T . If T (v) = 0W for some v ∈ V and v =∑n

j=1 ajvj for some aj ∈ F , then

T (v) = T

 n∑
j=1

ajvj

 =

n∑
j=1

ajT (vj) =

n∑
j=1

ajwj = 0W .

Since wj are linearly independent, aj = 0 for all j and therefore v = 0V .
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4.2 Matrix multiplication

Recall that two matrices are equal, if they are of the same size and their (i, j)

entries are equal for all (i, j). We write (M)ij for the (i, j) entry of a matrix M .

Definition 4.2.1 (Matrix multiplication: row by column). The product AB

of a m×n matrix A and a n× ℓ matrix B is the m× ℓ matrix whose (i, j) entry
is

(AB)ij =

n∑
k=1

(A)ik(B)kj

for 1 ≤ i ≤ m and 1 ≤ j ≤ ℓ.

To compute the (i, j) entry of AB, using the ith row of A and the jth column
of B, ai1 ai2 · · · ain




b1j

b2j
...

bnj

 =

 ∑n
k=1 aikbkj

 .

Proposition 4.2.2. For all m× n matrices A, n× k matrices B and B′, k × ℓ

matrices D, and c ∈ F ,

A(B +B′) = AB +AB′, A(cB) = c(AB), (AB)C = A(BC).

Proof. In each case, after verifying that the matrices in the both sides of the equal-
ity have the same size, we need to check that for all (s, t),

(A(B +B′))st =

n∑
p=1

(A)sp(B +B′)pt

=

n∑
p=1

(A)sp((B)pt + (B′)pt) =

n∑
p=1

(A)sp(B)pt +

n∑
p=1

(A)sp(B
′)pt

= (AB)st + (AB′)st.
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(A(kB))st =

n∑
p=1

(A)sp(kB)pt

=

n∑
p=1

(A)sp(k(B)pt) = k

n∑
p=1

(A)sp(B)pt

= k(AB)st

((AB)C)st =

k∑
q=1

(AB)sq(C)qt =

k∑
q=1

(
n∑

p=1

(A)sp(B)pq

)
(C)qt

=

n∑
p=1

(A)sp

(
k∑

q=1

(B)pq(C)qt

)
= (A(BC))st.

A column vector x ∈ Fn can be considered a n× 1 matrix. Then, the product
of a m× n matrix A = (aij) and a column vector x ∈ Fn is

Ax =


a11 a12 · · · a1n

a21 a22 a2n
...

. . .
...

am1 am2 · · · amn



x1

x2

...
xn

 =


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 .

(4.2.1)
It is often very useful to notice that the matrix-vector product Ax can be real-

ized as a linear combination of columns of A, and vice versa:
a11 a12 · · · a1n

a21 a22 a2n
...

. . .
...

am1 am2 · · · amn



x1

x2

...
xn

 = x1


a11

a21
...

am1

+ x2


a12

a22
...

am2

+ · · ·+ xn


a1n

a2n
...

amn


and thus

Ax = x1A1 + x2A2 + · · ·+ xnAn (4.2.2)
where Ak = Ck(A) is the kth column of the matrix A. Then, the product of two
matrices A and B can be realized as a list of matrix-vector products

AB =
[
AB1 AB2 · · · ABℓ

]
where Bk = Ck(B) is the kth column of B.

Alternatively, we can multiply two matrices column by row.
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Proposition 4.2.3 (Matrix multiplication: column by row). If A is a m× n

matrix and B is a n× ℓ matrix then

AB =

n∑
k=1

Ck(A)Rk(B)

=


a11

a21
...

am1


[
b11 b12 · · · b1ℓ

]
+ · · ·+


a1n

a2n
...

amn


[
bn1 bn2 · · · bnℓ

]

where Ck(A) is the kth column of A and Rk(B) is the kth row of B.

Proof. Note that for each k, Ck(A)Rk(B) is an m× ℓ matrix and its (i, j) entry is
(A)ik(B)kj . Then their sum over k = 1, 2, ..., n

(A)i1(B)1j + (A)12(B)2j + · · ·+ (A)in(B)nj

is equal to (AB)ij in the definition of AB.

Example 4.2.4. The identity matrix In is the n× n matrix such that

(In)ij =

1 if i = j,

0 otherwise.

Then, for all m× n matrices X and n× k matrices Y ,

XIn = X and InY = Y.

Definition 4.2.5. A n× n matrix A is invertible, if there exists a n× n matrix
B such that

BA = In and AB = In.

We write A−1 for B and call it the inverse of A.

We will study the properties of invertible matrices later, including the unique-
ness of A−1 when A is invertible.
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4.3 Linear transformations and matrices

4.3.1 Matrix representation of T

Lemma 4.3.1. Let A be a m × n matrix over F . Then, the map LA defined by
matrix vector multiplication as in (4.2.1)

LA : Fn → Fm, LA(x) = Ax

is a linear transformation.

Proof. This follows from Proposition 4.2.2.

Lemma 4.3.2. Let A and B be m× n matrices over F . Then, LA = LB if and
only if A = B. That is,

Ax = Bx for all x ∈ Fn

if and only if A = B as a matrix.

Proof. (⇒) Note that LA(ej) = Aej is the jth column of A. Thus, Cj(A) = Cj(B)

for all j.

Lemma 4.3.3. For every linear transformation T : Fn → Fm, there is a unique
m× n matrix A such that T = LA, and thus

T (x) = Ax for all x ∈ Fn.

Proof. First we want to find a matrix A such that T (x) = Ax for all x ∈ Fn. Then
the uniqueness of A follows from Lemma 4.3.2.
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Using the elementary basis E = {e1, e2, ..., en} of Fn and the fact that T is a
linear transformation,

T (x) = T

(
n∑

i=1

xiei

)
=

n∑
i=1

xiT (ei)

=

 | | |
T (e1) T (e2) · · · T (en)

| | |



x1

x2

...
xn

 for all x =


x1

x2

...
xn

 .

For the third equality we used the observation (4.2.2). Therefore, T = LA where

A =

 | | |
T (e1) T (e2) · · · T (en)

| | |

 .

Theorem 4.3.4. Let V and W be vector spaces over the same F . Let B =

{v1, ..., vn} and C = {w1, ..., wm} be bases of V and W respectively. For every
linear transformation T : V → W , there exists a unique m × n matrix [T ]BC

such that
[T (v)]C = [T ]BC [v]B for all v ∈ V . (4.3.1)

The matrix [T ]BC is called the matrix representation of T with relative to bases
B and C,

If V = W and the same basis B is used for the domain and codomain of T ,
then we write [T ]B for [T ]BB.

Proof. Note that we are looking for a matrix A = [T ]BC making the diagram in
Figure 4.1 commutes. Since [ ]B is an isomorphism (Proposition 4.1.1), its inverse
is an isomorphism from Fn to V and thus

[ ]C ◦ T ◦ [ ]−1B : Fn → Fm

is a linear transformation. By Lemma 4.3.3, it should be of the form LA for some
matrix A.

[ ]C ◦ T ◦ [ ]−1B = LA

Therefore, [T (v)]C = LA[v]B for all v ∈ V .
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V
T //

[ ]B
��

W

[ ]C
��

Fn LA // Fm

〈Figure 4.1〉 The matrix representation of T with relative to B and C.

Now we compute the matrix representation [T ]BC explicitly. For every v ∈ V ,
we can write v =

∑n
i=1 aivi and

[T (v)]C =

[
T

(
n∑

i=1

aivi

)]
C

=

n∑
i=1

ai[T (vi)]C

=

 | | |
[T (v1)]C [T (v2)]C · · · [T (vn)]C

| |



a1

a2
...
an



=

 | | |
[T (v1)]C [T (v2)]C · · · [T (vn)]C

| | |

 [v]B.

Here, we used the fact that the coordinate map [ ]C is a linear transformation
(Proposition 4.1.1) for the second equality and the observation (4.2.2) for the third
equality.

Proposition 4.3.5. With the above notation, the matrix representation of T :

V → W with relative to B and C is

[T ]BC =

 | | |
[T (v1)]C [T (v2)]C · · · [T (vn)]C

| | |

 .

Example 4.3.6. Find the matrix representations of

1. T : P (4) → P (3), f 7→ 3f ′

2. T : P (3) → P (4), f 7→ (2x+ 1)f
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with relative to bases B = {1, x, x2, x3} for P (3) and C = {1, x, x2, x3, x4} for P (4).

Example 4.3.7. Let T : P (3) → P (3) given by f(x) 7→ xf ′(x). Compute [T ]B and
[T ]B′ where

1. B = {4x, 3x2, 2, x3}.

2. B′ = {1− x, x+ x2, x2 − x3, x3}.

Example 4.3.8. Let V andW be vector spaces overF of dimension n andm respectively.

1. The matrix representation [T ]BC of the zero map T0 : V → W with relative to any
bases B and C is the m× n zero matrix.

2. The matrix representation [IV ]B of the identity map IV : V → V with relative to
any basis B for V is the identity matrix In.

4.3.2 HomF (V,W ) and Mmn(F )

Recall that HomF (V,W ) is the vector space of linear transformations from V to
W (Proposition 3.1.5).

Lemma 4.3.9. Let V and W be vector spaces over the same F with bases B and
C respectively. For all linear transformations T, S : V → W and k ∈ F ,

[T + S]BC = [T ]BC + [S]BC and [kT ]BC = k[T ]BC .

Proof. Let B = {v1, ..., vn}. From Proposition 4.3.5, the jth column of [T + S]BC

is
[(T + S)(vj)]C = [T (vj) + S(vj)]C = [T (vj)]C + [S(vj)]C ,

which is the jth column of [T ]BC + [S]BC . The jth column of [kT ]BC is

[(kT )(vj)]C = [kT (vj)]C = k[T (vj)]C ,

which is the jth column of k[T ]BC .

In Theorem 4.1.2, we saw that every abstract n-dimensional vector over F is
isomorphic to Fn. Now we have a similar result for the vector space of linear
transformations.
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Theorem 4.3.10. Let V be a vector space of dimension n and W be a vector
space of dimension m over the same F . Then,

HomF (V,W ) ∼= Mmn(F ).

Proof. Let us fix bases B and C for V and W respectively. Then, by Lemma 4.3.9,
T 7→ [T ]BC

is a linear transformation from HomF (V,W ) to Mmn(F ). Now we need to show
that this map is one-to-one and onto.

Example 4.3.11. In Example 2.2.3, we found the following basis for the vector space
Mmn(F ).

{Ea,b ∈ Mmn(F ) : 1 ≤ a ≤ m, 1 ≤ b ≤ n}.
Verify that the elements in HomF (V,W ) corresponding to Eab under the above isomor-
phism are

Tab : V → W, Tab(vk) =

wa if b = k,

0 otherwise.
where B = {v1, ..., vn} and C = {w1, ..., wm} are bases of V and W respectively, and
therefore the maps Tab form a basis of HomF (V,W ). See the proof of Theorem 3.4.4.

Next we want to show that matrix multiplication studied in §4.2 can be realized
as the composition of linear transformations.

Theorem 4.3.12. Let U , V , and W be vector spaces over the same F with bases
A, B, and C respectively. If S : U → V and T : V → W are linear trans-
formations then their composition T ◦ S : U → W is a linear transformation
and

[T ◦ S]AC = [T ]BC [S]AB.

Thus, the isomorphism given in Theorem 4.3.10 extends to the correspondence
between the composition of linear transformations

HomF (U, V )× HomF (V,W ) → HomF (U,W ), (S, T ) 7→ T ◦ S

and matrix multiplication
Mnℓ(F )×Mmn(F ) → Mmℓ(F ), (X,Y ) 7→ Y X.
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Proof. The fact that T ◦S is a linear transformation is shown in Proposition 3.1.6.
Now, we note that for all u ∈ U ,

([T ]BC [S]AB) [u]A = [T ]BC ([S]AB[u]A)

= [T ]BC [S(u)]B

= [T (S(u))]C = [(T ◦ S)(u)]C
= [T ◦ S]AC [u]A

where we used the associativity of matrix multiplication for the first equality
and (4.3.1) for the others. Next, let dimU = n. Since [ ]A : U → Fn is surjective
(Proposition 4.1.1), the above identities become

([T ]BC [S]AB) x = [(T ◦ S)]AC x for all x ∈ Fn.

Now by applying Lemma 4.3.2 we conclude that [T ]BC [S]AB = [T ◦ S]AC as a
matrix.

Let V be a n-dimensional vector space over F . Linear transformations from
V to itself are called endomorphisms of V and we write EndF (V ) for the vector
space of endomorphisms of V .

EndF (V ) = HomF (V, V ) ∼= Mn(F ).

Note that EndF (V ) is closed under composition.

Corollary 4.3.13. Let V be a finite dimensional vector space over F and B be a
basis of V . For all T, S ∈ EndF (V ) and k ∈ F ,

[T + S]B = [T ]B + [S]B, [kT ]B = k[T ]B

and
[T ◦ S]B = [T ]B [S]B.
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V
[ ]C

!!C
CC

CC
CC

C

Fn

[ ]−1
B

>>||||||||

LPC←B

// Fm

〈Figure 4.2〉 A basis-change matrix.

4.4 Change of basis

4.4.1 Basis change matrix

Let B and C be bases of a vector space V over F . Since the coordinate maps [ ]B
and [ ]C from V to Fn are isomorphisms, so is their composition

[ ]C ◦ [ ]−1B : Fn → Fn.

By Lemma 4.3.3, this map should be of the form LA for some matrix A, which
we will denote by PC←B. See Figure 4.2.

Definition 4.4.1. With the above notation, the matrix PC←B satisfying

[v]C = PC←B [v]B for all v ∈ V

is the basis-change matrix (or transition matrix) from B to C.

Let B = {v1, ..., vn} and compute the matrix PC←B. For any v ∈ V , we have
v =

∑n
i=1 kivi and then

[v]C =

[
n∑

i=1

kivi

]
C

=

n∑
i=1

ki[vi]C =

 | |
[v1]C · · · [vn]C

| |



k1
...
kn


=

 | |
[v1]C · · · [vn]C

| |

 [v]B.
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Proposition 4.4.2. Let B = {v1, ..., vn} and C be bases of a vector space V .
Then the basis-change matrix from B to C is

PC←B =

 | |
[v1]C · · · [vn]C

| |

 .

Example 4.4.3. Let V = P (3) and B = {1, x, x2, x3}. For each of the following cases,
find the basis change matrix from B to C.

1. C = {1, (x− 1), (x− 1)2, (x− 1)3}.

2. C = {1, (x+ 1), (x+ 1)x, (x+ 1)x(x− 1)}.

We note that since [ ]C ◦ [ ]−1B is an isomorphism, the linear transformation
LPC←B is invertible and its inverse map should be

L−1PC←B
= LPB←C .

In particular, we have

(PB←CPC←B) [v]B = [v]B and (PC←BPB←C) [v]C = [v]C

for all v ∈ V . See Figure 4.3. Then, by Lemma 4.3.2, we have

PB←CPC←B = PC←BPB←C = In,

Proposition 4.4.4. For any two bases B and C of a vector space V ,

P−1C←B = PB←C and P−1B←C = PC←B.

4.4.2 Matrix similarity

Now we focus on a linear transformation T : V → V with the same basis B for
the domain and codomain. This gives a matrix representation [T ]B of T .

Proposition 4.4.5. Let B and C be bases of V . Two matrix representations [T ]B



44 4 COORDINATIZATION

V
[ ]C
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[ ]B
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[ ]C
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// Fn
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[ ]B
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OOO
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Fn

PC←B

// Fn

PB←C

// Fn

〈Figure 4.3〉 Basis-change matrices and their inverses.

Fn
[T ]B //
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V
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[ ]B
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B V

[ ]B

aaBBBBBBBB

[ ]C~~||
||
||
||

Fn

OO

[T ]C

// Fn

OO

〈Figure 4.4〉 Matrix representations [T ]B and [T ]C .

and [T ]C of the same linear transformation T : V → V satisfy

[T ]C = P−1B←C [T ]B PB←C .

Proof. See Figure 4.4. For all v ∈ V ,(
P−1B←C [T ]B PB←C

)
[v]C = P−1B←C [T ]B (PB←C [v]C)

= P−1B←C ([T ]B [v]B) = P−1B←C [T (v)]B

= PC←B [T (v)]B = [T (v)]C = [T ]C [v]C .

Since [ ]C : V → Fn is surjective, we have
(
P−1B←C [T ]B PB←C

)
x = [T ]C x for all

x ∈ Fn and therefore, as a matrix, [T ]C = P−1B←C [T ]B PB←C .

Example 4.4.6. For T : V → V and bases B and B′ of V given in Example 4.3.7, find
the basis change matrices PB←B′ and PB′←B, and then verify Proposition 4.4.5.
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Fn A // Fn

PC←E

��
Fn

PE←C

OO

[LA]C // Fn

〈Figure 4.5〉 LA and [LA]C .

When working with the vector space Fn of column vectors and linear transfor-
mations from Fn to itself, we implicitly use the elementary basis E = {e1, ..., en}
(Example 2.2.4). Note that

1. v = [v]E for all v ∈ Fn,

2. A = [LA]E for any n× n matrix A.

Now let us compute the matrix representation of LA : Fn → Fn with relative
to a new basis C of Fn.

Proposition 4.4.7. Let C = {v1, ..., vn} be a basis of Fn. The matrix represen-
tation of LA with relative to C is

[LA]C = P−1E←C APE←C

where

PE←C =

 | | |
v1 v2 · · · vn

| | |

 .

Proof. See Figure 4.5. Note that if v ∈ Fn then [v]E = v. Then, using Proposition
4.4.2, we have

PE←C =

 | | |
[v1]E [v2]E · · · [vn]E

| | |

 =

 | | |
v1 v2 · · · vn

| | |

 .
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Definition 4.4.8. A n × n matrix A is similar to A′, if there is an invertible
matrix X such that

A′ = X−1 AX.

Proposition 4.4.9. Matrix similarity is an equivalence relation on Mn(F ).

Proof. (1) For any A ∈ Mn(F ), A = I−1n AIn and thus A is similar to itself. (2)
Suppose that A is similar to B. Then, there is X such that B = X−1AX , and
with Z = X−1 we have A = Z−1BZ, which shows that A is similar to B. (3)
Suppose that A is similar to B and B is similar to C. Then, there exisit X and Y

such that B = X−1AX and C = Y −1BY . With Z = XY , we have C = Z−1AZ

and therefore, A is similar to C.

Let B and B′ be bases of V . Then, the matrix representations A = [T ]B and
A′ = [T ]B′ of the same linear transformation T : V → V are similar, since A′ =

X−1AX with
X = PB←B′ .

On the other hand, the matrix A can be thought of the matrix representation of
LA : Fn → Fn with relative to the elementary basis E of Fn. If C = {w1, ...,wn}
is the basis of Fn consisting of the columns of the matrix X (cf. Theorem 6.1.4)
then X is equal to the basis change matrix

X = PE←C =

 | |
w1 · · · wn

| |

 .

Therefore, A′ = X−1AX can be thought of the matrix representation of LA

A′ = [LA]C

with relative to C. See Figure 4.6.

Example 4.4.10. Consider T : P (3) → P (3) given by f(x) 7→ xf ′(x). In Example
4.3.7, we computed the matrix representations

A = [T ]B and A′ = [T ]B′
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V

[ ]B′

##

[ ]B

��

T // V

[ ]B′

{{

[ ]B

��
Fn LA // Fn

X−1

��
Fn

X

OO

LA′ // Fn

〈Figure 4.6〉 Similar matrices A and A′.

with relative to the bases B = {4x, 3x2, 2, x3} and B′ = {1− x, x+ x2, x2 − x3, x3} of
P (3). See also Example 4.4.6. Find a basis C of Fn such that

A′ = [LA]C .





Chapter 5

Systems of linear equations

미지수 n개와 일차식 m개로 구성된 연립방정식을 풀어봅시다. 방정식의 해를
종벡터의선형조합으로표현하고, 이를선형변환과연관지어공부해봅시다.
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5.1 Gaussian elimination

A system of m linear equations with n unknowns is

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm.

It is consistent, if it has at least one solution; it is inconsistent, if it does not have
any solution.

Using matrix multiplication, we can write the system as Ax = b
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn



x1

x2

...
xn

 =


b1

b2
...
bm

 .

Then the augmented matrix for the system is

[A|b] =


a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm

 .

Definition 5.1.1. In a matrix, if there is a row containing a nonzero entry then
the leftmost nonzero entry is called the leading coefficient (or pivot) of that row.
A matrix is said to be in reduced row echelon form, if

1. all of the leading coefficients are equal to 1.

2. the leading coefficient in each row is to the right of the leading coefficient
of the row above.

3. in every column containing a leading coefficient, all of the other entries in
that column are zero.
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The first two conditions imply that the lower left part of the matrix consists of
zeros, and the zero rows are located at the bottom of the matrix.

There are three types of elementary row operations we can apply to a ma-
trix:

1. Exchange Ri and Rj :
− Ri −

− Rj −

 ⇝


− Rj −

− Ri −


2. Replace Rj with kRj : − Ri −

 ⇝
 − kRi −


3. Replace Rj with kRi +Rj :

− Ri −

− Rj −

 ⇝


− Ri −

− kRi +Rj −


To solve a system Ax = b,

1. apply elementary row operations to the augmented matrix for the system

[A|b] =


a11 a12 a13 a14 a15 a16 b1

a21 a22 a23 a24 a25 a26 b2

a31 a32 a33 a34 a35 a36 b3

a41 a42 a43 a44 a45 a46 b4
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2. to obtain [rref(A)|b′]

[rref(A)|b′] =


0 1 ∗ 0 0 ∗ b′1
0 0 0 1 0 ∗ b′2
0 0 0 0 1 ∗ b′3
0 0 0 0 0 0 b′4

 .

3. Note that elementary row operations do not change the solution set of the
associated system, i.e., two systems Ax = b and rref(A)x = b′ have the
same set of solutions.

4. Solve the simplified system rref(A) x = b′. Write solutions using free vari-
ables for xj corresponding to columns without leading coefficients.

Remark 5.1.2. Let Ax = b be a consistent system. Observe that

the number of pivots in rref(A)

+ the number of free variables in the solution

= the number of columns of A.

Example 5.1.3. 
x1 + x2 + 2x3 = 9

2x1 + 4x2 − 3x3 = 1

3x1 + 6x2 − 5x3 = 0

Apply elementary row operations to [A|b] to obtain [rref(A)|b′] 1 1 2 9

2 4 −3 1

3 6 −5 0

 ⇝
 1 0 0 1

0 1 0 2

0 0 1 3

 .

We solve rref(A)x = b′ to conclude thatx1

x2

x3

 =

12
3

 .

Example 5.1.4. 
x1 − 2x2 − x3 + 3x4 = 0

−2x1 + 4x2 + 5x3 − 5x4 = 3

3x1 − 6x2 − 6x3 + 8x4 = 2
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Applying elementary row operations to [A|b] to obtain

[rref(A)|b′] =

 1 −2 0 10/3 1

0 0 1 1/3 1

0 0 0 0 5

 .

From the last row, we conclude that this system is inconsistent.

Example 5.1.5. 
3x2 − 6x3 + 6x4 + 4x5 = −5

3x1 − 7x2 + 8x3 − 5x4 + 8x5 = 9

3x1 − 9x2 + 12x3 − 9x4 + 6x5 = 15

Applying elementary row operations to [A|b] we obtain

[rref(A)|b′] =

 1 0 −2 3 0 −24

0 1 −2 2 0 −7

0 0 0 0 1 4

 .

Solving the system associated with this, we have
x1

x2

x3

x4

x5

 =


2x3 − 3x4 − 24

2x3 + 2x4 − 7

x3(= s)

x4(= t)

4

 = s


2

2

1

0

0

+ t


−3

2

0

1

0

+


−24

−7

0

0

4

 .

Example 5.1.6. 

2x1 + 4x2 − 2x3 + 2x4 + 4x5 = 2

x1 + 2x2 − x3 + 2x4 = 4

3x1 + 6x2 − 2x3 + x4 + 9x5 = 1

5x1 + 10x2 − 4x3 + 5x4 + 9x5 = 9

Applying elementary row operations to [A|b], we obtain

[rref(A)|b′] =


1 2 0 0 3 2

0 0 1 0 −1 4

0 0 0 1 −2 3

0 0 0 0 0 0
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Solve the system associated with this matrix to obtain
x1

x2

x3

x4

x5

 =


−2x2 − 3x5 + 2

x2(= s)

x5 + 4

2x5 + 3

x5(= t)

 = s


−3

1

0

0

0

+ t


−2

0

−1

2

1

+


2

0

4

3

0

 .
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5.2 Ax = b in terms of LA

Let A be a m× n matrix over F and b ∈ Fm. Recall that the map

LA : Fn → Fm, LA(x) = Ax

is a linear transformation.

Theorem 5.2.1. Let A be a m×n matrix over F . The following are equivalent.

1. A system of linear equations Ax = b is consistent.

2. b is in the image of the map LA

b ∈ imLA.

3. b is in the subspace of Fm spanned by the columns Aj of A

b ∈ Span({A1, ..., An}).

Proof.

Corollary 5.2.2. As a subspace of Fm,

imLA = Span({A1, ..., An}).

Corollary 5.2.2 also follows from Proposition 3.2.3, since the columns of A are
the image of the elementary basis E = {e1, ..., en} of Fn under LA.

LA(ej) = Aj

For this reason, the image of the linear transformation LA is often called the
column space of A and denoted by Col(A).
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5.3 Homogeneous systems

A system of linear equations Ax = b is called homogeneous, if b = 0.

Proposition 5.3.1. The solution set of a homogeneous equation Ax = 0 is exa-
clty the kernel of the linear transformation LA.

kerLA = {x ∈ Fn : Ax = 0} .

For this reason, the kernel of the linear transformation LA is often called the
null space of A and denoted by Null(A).

Proposition 5.3.2. Let xp be a solution to a system Ax = b. Every solution to
Ax = b is of the form

x = xh + xp
for some xh ∈ Null(A).

Proof. Let x be a general solution to Ax = b. Then,

A(x − xp) = Ax −Axp = b − b = 0,

and thus x − xp ∈ Null(A).

Example 5.3.3. Find a basis of the solution space to each of the following homogeneous
systems.

1.


x1 + x2 + 2x3 = 0

2x1 + 4x2 − 3x3 = 0

3x1 + 6x2 − 5x3 = 0

2.


3x2 − 6x3 + 6x4 + 4x5 = 0

3x1 − 7x2 + 8x3 − 5x4 + 8x5 = 0

3x1 − 9x2 + 12x3 − 9x4 + 6x5 = 0
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3.



2x1 + 4x2 − 2x3 + 2x4 + 4x5 = 0

x1 + 2x2 − x3 + 2x4 = 0

3x1 + 6x2 − 2x3 + x4 + 9x5 = 0

5x1 + 10x2 − 4x3 + 5x4 + 9x5 = 0

Remark 5.3.4. Let us define the rank and nullity of a matrix A by the rank and
nullity of the linear transformationLA, i.e., the dimensions of imLA and kerLA

respectively.

1. Observe that in the solution to Ax = 0, the vectors multiplied by free
variables form a basis of the solution space. Thus,

the nullity of A = dim kerLA = dim Null(A)

= the number of free variables in the solution to Ax = 0.

2. Then using the observation in Remark 5.1.2 with Theorem 3.3.1 applied to
LA,

the rank of A = dim imLA = dim Col(A)

= the number of pivots in rref(A).

The rank of a matrix A is often defined by the number of pivots in rref(A).





Chapter 6

Invertible matrix

가역행렬의 기본 성질을 공부하고 이를 선형변환과 연립 일차방정식 맥락에서 이
해해봅시다. 정사각행렬의특성을알려주는값으로행렬식을정의하고그성질을
공부합시다.
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6.1 Matrix inverse

Recall that a n×n matrix A is invertible, if there exists a n×n matrix X such that

XA = In and AX = In.

We write A−1 for X and call it the inverse of A (Definition 4.2.5).

Proposition 6.1.1. Let A be a n× n matrix.

1. If A is invertible then its inverse is unique.

2. If A is invertible and XA = In then AX = In. Therefore, X = A−1.

3. If A is invertible and AX = In then XA = In. Therefore, X = A−1.

Proof. (1) Let X and X ′ be inverses of A. Then, by multiplying AX = In by X ′,

X ′(AX) = X ′In

(X ′A)X = X ′.

Then, using X ′A = In, we conclude that X = X ′.
(2) By multiplying XA = In by A,

A(XA) = AIn

(AX)A = A.

Then, by multiplying A−1, we obtain ((AX)A)A−1 = AA−1 and thus AX =

In.

Proposition 6.1.2. Let A and B be n× n matrices.

1. If A is invertible then its inverse A−1 is invertible and
(A−1)−1 = A.

2. If A and B are invertible then their product AB is invertible and
(AB)−1 = B−1A−1.

3. If A is invertible then its transpose AT is invertible and
(AT )−1 = (A−1)T .
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Proof. (1) From the definition of A−1,

A−1A = AA−1 = In

and it shows that A is the inverse of A−1. (2) Note that

(B−1A−1)(AB) = (AB)(B−1A−1) = In.

(3) Using (XY )T = Y TXT ,

(A−1)TAT = (AA−1)T = In, and AT (A−1)T = (A−1A)T = In.

Proposition 6.1.3. A n×n matrix A is invertible if and only if the linear trans-
formation

LA : Fn → Fn, x 7→ Ax

is bijective.

Proof. If a n× n matrix A is invertible then it is straightfoward to verify that the
map defined by

LA−1 : Fn → Fn, x 7→ A−1x

is the inverse map of LA. Therefore, LA is bijective.
Conversely, assume that the linear transformation LA is bijective and L−1A is its

inverse. Then L−1A is a linear transformation from Fn to Fn, and thus there is a
matrix B such that

L−1A : Fn → Fn, x 7→ Bx.

Then, the compositions L−1A ◦ LA and LA ◦ L−1A are the identity map on Fn, and

(BA)x = x and (AB)x = x

for all x ∈ Fn, which implies that BA = In and AB = In. Therefore, the matrix
A is invertible.
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Theorem 6.1.4. Let A be a n× n matrix. The following are equivalent.

1. A is invertible.

2. The map LA : Fn → Fn is bijective.

3. The nullity of LA is 0.

4. The rank of LA is n.

5. The number of pivots in rref(A) is n.

6. rref(A) = In.

7. The homogeneous system Ax = 0 has only trivial solution.

8. The columns of A are linearly independent.

9. For every b ∈ Fn, the system Ax = b is consistent.

10. For every b ∈ Fn, b ∈ Col(A).

Proof. (1) ⇔ (2) by Proposition 6.1.3. Note that (3) holds if and only if LA is
injective and (4) holds if and only if LA is surjective. Therefore, (2) holds if and
only if both (3) and (4) hold. We have (3) ⇔ (4) by the rank-nullity theorem.
Then use Remark 5.3.4 to verify that

(4) ⇔ (5) ⇔ (6), (3) ⇔ (7) ⇔ (8), and (4) ⇔ (9) ⇔ (10).

Theorem 6.1.4는 행렬 A가 가역 invertible 행렬에 대해 크게 세가지 관점에서
기술하고있습니다.

a) 선형변환 LA라는함수의관점에서,

b) 일차연립방정식 Ax = b관점에서,

c) 행렬 A를구성하는 n개의종벡터들의관점에서.
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다음장에서배우는행렬식을이용하면, 행렬 A가 n2개숫자들의나열이라는관
점에서, A의가역성을 A의원소 (A)ij들을이용하여판정할수있습니다 (Theorem
6.4.2).
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6.2 Elementary matrices and A−1

6.2.1 Elementary matrices

Elementary matrices are n × n matrices obtained by applying elementary row
operations to the identity matrix In. Note that the columns of In form the ele-
mentary basis {e1, ..., en} of Fn and the ith row of In is the transpose of eTi of the
ith column ei of In.

1. Exchange Ri and Rj in the identity matrix In:

In =


− eTi −

− eTj −

 ⇝ E =


− eTj −

− eTi −


2. Replace Rj with kRj in the identity matrix In:

In =

 − eTi −

 ⇝ E =

 − keTi −


3. Replace Rj with kRi +Rj in the identity matrix In:

In =


− eTi −

− eTj −

 ⇝ E =


− eTi −

− keTi + eTj −


If M ′ is a matrix obtained by applying an elementary row operation to a n× ℓ

matrix M then
M ′ = EM

where E is the elementary matrix obatined by applying the corresponding op-
eration to In. Then, rref(A) can be obtained by multiplying A by elementary
matrices (corresponding to elementary row operations) from the left hand side,

(Ek(· · · (E2(E1A)) · · · )) = rref(A)

(Ek · · ·E2E1)A = rref(A) (6.2.1)
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6.2.2 Computing A−1

Let P and Q be n × n matrices. Applying an elementary row operation to the
augmented matrix M = [P | Q] is equivalent to multiplying the corresponding
elementary matrix E to M = [P | Q]. Then, it is

E[P | Q] = [EP | EQ].

Now, recall that a n×n matrix A is invertible if and only if rref(A) = In, which
is equivalent to say that there are elementary matrices E1, E2, ..., Ek such that

(Ek · · ·E2E1)A = In.

Multiplying them to the augmented matrix [A | In], we obtain

(Ek · · ·E2E1) [A | In]

=[(Ek · · ·E2E1)A | (Ek · · ·E2E1)In]

=[In | (Ek · · ·E2E1)]

=[In | B].

Knowing that A is invertible and we have B such that BA = In, by Proposition
6.1.1 (or Proposition 6.2.3), we conclude that B = A−1.

Proposition 6.2.1. A n× n matrix A is invertible if and only if we can obtain
[In | B] by applying elementary row operations to [A | In]. In this case,

B = A−1.

6.2.3 LU decomposition

In (6.2.1), we observed that there are elementary matrices Ej such that

(Ek · · ·E2E1)A = rref(A).

Note that all these elementary matrices are invertible.

Definition 6.2.2. An LU decomposition of a square matrix A is the product of
a lower triangular matrix and an upper triangular matrix that is equal to A

A = LU.
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6.2.4 Left and right inverses

In Proposition 6.1.1, we showed that, knowing that A is invertible, a left inverse
of A is indeed the inverse of A. Now, for later use, we show that the statement
still holds without the invertibility condition.

Proposition 6.2.3. Let A be a n× n matrix.

1. There is a n× n matrix N such that NA = In if and only if Ax = b has
a solution for all b ∈ Fn.

2. A left inverse of a A is a right inverse of A. That is, if there is a n × n

matrix N such that NA = In then AN = In. Thus, N = A−1.

3. A right inverse of A is a left inverse of A. That is, if there is a n×n matrix
M such that AM = In then MA = In. Thus M = A−1.

Proof. (1) (⇒) For all b ∈ Fn, x = Nb is a solution to Ax = b. (⇐) Suppose that
there is no N satisfying NA = In. Then, because rref(A) can be obtained by mul-
tiplyingA by elementary matrices (corresponding to elementary row operations)
from the left hand side,

(Ek(· · · (E2(E1A)) · · · )) = rref(A)

(E1 · · ·E2E1)A = rref(A)

we have rref(A) ̸= In. In this case, rref(A) contains a zero row and thus we can
find b ∈ Fn such that Ax = b is inconsistent.

(2) Suppose that there is N such that NA = In. Then, from statement (1), for
any b ∈ Fn, there is x ∈ Fn such that Ax = b. By multiplying Ax = b by N ,

N(Ax) = Nb

(NA)x = Nb,

and thus x = Nb. This shows that

b = Ax = A(Nb) = (AN)b.

Writing N ′ for the product AN , we have b = N ′b for all b ∈ Fn. This shows
that N ′ = In and thus AN = In. From NA = AN = In, we conclude that A is
invertible and N = A−1.
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(3) If AM = In then MTAT = In. Thus, by statement (2), AT is invertible and
its inverse is MT . Then, by Proposition 6.1.2, A = (AT )T is invertible and its
inverse is M = (MT )T .
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6.3 Determinant

The determinant is a function defined on the set of square matrices

det : Mn(F ) → F, A 7→ det(A).

It can be considered a function of the rows of a matrix:

det(A) = det


− R1 −

...
− Rn −


where Rk = Rk(A) is the kth row of A. Similarly, the determinant can be con-
sidered a function of columns of a matrix.

Let us begin with the determinant of 1× 1 and 2× 2 matrices:

det
[
a
]
= a and det

[
a b

c d

]
= ad− bc.

Definition 6.3.1 (Row expansion). We define the determinant det(A) of a
square matrix A = (aij) ∈ Mn(F ) inductively as follows.

1. For A = (a) ∈ M1(F ), det(A) = a.

2. Let n ≥ 2. For each 1 ≤ i ≤ n,

det(A) =

n∑
j=1

(−1)i+jaij det(Aij)

where Aij is the (n− 1)× (n− 1) matrix obtained by erasing the ith row
and jth column of A.

It turns out that the formula of det(A) provides the same value for all i. In
Proposition 6.3.4, we will give a formula which does not involve i.

Lemma 6.3.2. 1. For n ≥ 1, the determinant of the identity matrix In is
one.

det(In) = 1.

2. If any two rows in A are exchanged then the sign of the determinant
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changes. That is, as a function of the rows of a matrix, the determinant
is alternating.

det



...
− Rj −

...
− Ri −

...


= −det



...
− Ri −

...
− Rj −

...


3. As a function of the rows of a matrix, the determinant is multilinear, that

is,

det


...

− Ri +R′i −
...

 = det


...

− Ri −
...

+ det


...

− R′i −
...



det


...

− αRi −
...

 = αdet


...

− Ri −
...


for all Ri, R

′
i and α ∈ F .

Proof. Use mathematical inductionon n. See, for example, Theorem 4.3 in Fried-
berg (5th edition).

Let E = {e1, ..., en} be the elementary basis of Fn. Using Lemma 6.3.2, we can
show that as a function of the rows of a matrix

det


− eTi1 −

...
− eTin −

 =

±1 if {i1, ..., in} = {1, ..., n}

0 otherwise.

Then, for a permutation σ ∈ Sn,

det


− eTσ(1) −

...
− eTσ(n) −

 =

1 if σ is even

−1 if σ is odd
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Here, σ is even or odd, if we need even or odd number of transpositions (ex-
changes of two elements) respectively to obtain (1, 2, ..., n) from (σ(1), ..., σ(n)).
It is known that this parity is well-defined regardless of actual transpositions we
use. Now, let us define the sign (or the signature) of σ by

sgn(σ) = det


− eTσ(1) −

...
− eTσ(n) −

 .

Then, it is immediate to see that sgn(σ−1) = sgn(σ).

Lemma 6.3.3. Let Rk = Rk(A) be the kth row of a matrix A. For any permu-
tation σ ∈ Sn,

det


− Rσ(1) −
− Rσ(2) −

...
− Rσ(n) −

 = sgn(σ) det


− R1 −
− R2 −

...
− Rn −

 .

We remark that there is another way of computing sgn(σ): let us call a pair
(i, j) the inversion of σ, if i < j and σ(i) > σ(j). Writing inv(σ) for the number
of inversions of σ, it is known that

sgn(σ) = (−1)inv(σ).

Proposition 6.3.4. The determinant of A = (aij) ∈ Mn(F ) is

det(A) =
∑

σ∈Sn

sgn(σ) a1,σ(1) · · · an,σ(n).

Proof. The ith row of A is Ri =
∑n

j=1 ai,jeTj , Then using the mutilinearity of the
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determinant map shown in Lemma 6.3.2,

det(R1, ..., Rn) = det

 n∑
j1=1

a1,j1eTj1 , ...,
n∑

jn=1

an,jneTjn


=

n∑
j1=1

· · ·
n∑

jn=1

det
(
a1,j1eTj1 , ..., an,jneTjn

)
=

n∑
j1=1

· · ·
n∑

jn=1

a1,j1 · · · an,jn det
(
eTj1 , ..., e

T
jn

)
=
∑

σ∈Sn

sgn(σ)a1,j1 · · · an,jn where σ(k) = jk for all k.

Theorem 6.3.5. For every square matrix A = (aij) ∈ Mn(F ),

det(AT ) = det(A).

Proof. Let AT = (bij) thus bij = aji.

det(AT ) =
∑

σ∈Sn

sgn(σ)b1,σ(1) · · · bn,σ(n)

=
∑

σ∈Sn

sgn(σ)aσ(1),1 · · · bσ(n),n

=
∑

σ−1∈Sn

sgn(σ−1)a1,σ−1(1) · · · an,σ−1(n)

= det(A).

Therefore, we can think of the determinant is a function of the columns of a
matrix

det(A) = det

 | |
C1 · · · Cn

| |


where Ck = Ck(A) is the kth column of A.
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Corollary 6.3.6. 1. (Column expansion). For each 1 ≤ j ≤ n,

det(A) =

n∑
i=1

(−1)i+jaij det(Aij).

2. As a function of the columns of a matrix, the determinant is alternating.

3. As a function of the column of a matrix, the determinant is multilinear.

4. For any permutation σ ∈ Sn,

det

 | | |
Cσ(1) Cσ(2) · · · Cσ(n)

| | |

 = sgn(σ) det

 | | |
C1 C2 · · · Cn

| | |

 .

Recall that the trace map is compatible with matrix addition (Example 3.1.2).
Now we show that the determinant map is compatible with matrix multiplica-
tion.

Theorem 6.3.7. For A,B ∈ Mn(F ),

det(AB) = det(A)det(B).

Proof. For a matrix M , write Mj for the jth column of M . The jth column of the
product AB is

(AB)j =


∑

k a1kbkj∑
k a2kbkj

...∑
k ankbkj

 = b1j


a11

a21
...

an1

+ b2j


a12

a22
...

an2

+ · · ·+ bnj


a1n

a2n
...

ann

 =

n∑
i=1

bijAi

See also (4.2.2). Now considering the determinant as a function of columns of a
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matrix,

det(AB) = det
(

n∑
i1=1

bi1,1Ai1 , ...,

n∑
in=1

bin,nAin

)

=

n∑
i1=1

· · ·
n∑

in=1

bi1,1 · · · bin,n det(Ai1 , ..., Ain)

=
∑

σ∈Sn

bσ(1),1 · · · bσ(n),nsgn(σ)det(A1, ..., An)

= det(A)
∑

σ∈Sn

sgn(σ)bσ(1),1 · · · bσ(n),n

= det(A)det(B).

Corollary 6.3.8. Let A ∈ Mn(F ).

1. If A is invertible then det(A) ̸= 0 and

det(A−1) = 1

det(A)
.

2. det(A) = 0 if and only if det(rref(A)) = 0.

Proof. (1) By applying Theorem 6.3.7 to AA−1 = In,

det(AA−1) = det(A)det(A−1) = 1.

(2) By Theorem 6.3.7, if Ej are elementary matrices such that

Ek · · ·E2E1A = rref(A)

then
det(Ek) · · ·det(E1)det(E1)det(A) = det(rref(A)).

By noting that det(Ej) ̸= 0, we have det(A) = 0 if and only if det(rref(A)) =

0.

The number of pivots in rref(A) is n if and only if rref(A) = In, in which case
det(rref(A)) = 1 and thus det(A) ̸= 0. If the number of pivots in rref(A) is strictly
less than n then rref(A) contains a zero row and therefore det(rref(A)) = 0. This
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discussion combined with Theorem 6.1.4 (1) ⇔ (6) shows that the converse of
Corollary 6.3.8 (1) is also true. We will give a more constructive proof in Theorem
6.4.2.

Proposition 6.3.9. If two square matrices A and B are similar, i.e., there is an
invertible matrix Q such that B = Q−1AQ then

tr(A) = tr(B) and det(A) = det(B).

Proof. First we note that tr(XY ) = tr(Y X) for any n× n matrices X and Y .

tr(XY ) =

n∑
i=1

(XY )ii =

n∑
i=1

n∑
k=1

(X)ik(Y )ki =

n∑
k=1

n∑
i=1

(Y )ki(X)ik = tr(Y X).

Then, tr(B) = tr(Q−1AQ) = tr(AQQ−1) = tr(A). Next, using Theorem 6.3.7,

det(B) = det(Q−1AQ) = det(Q−1)det(A)det(Q)

= det(Q)−1 det(A)det(Q) = det(A).

We define the trace and determinant of a linear transformation T : V → V

by the trace and determinant of the matrix [T ]B with relative to any basis B. By
Proposition 6.3.9, they are well defined regardless of B .

The determinant a 2× 2 real matrix A =
[
v1 v2

]
gives the “signed” area of a

paralleogram formed by two vectors v1 =
[
a c

]T
and v2 =

[
b d

]T
in R2:

det
[
a b

c d

]
.

The determinant a 3×3 real matrixA =
[
v1 v2 v3

]
gives the “signed” volumn

of a parallelepiped formed by three vectors vi =
[
ai bi ci

]T
in R3:

det

a1 a2 a3

b1 b2 b3

c1 c2 c3


Note that it is the box product (or scalar triple product) given in Calculus.
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Considering the corresponding linear transformation

LA : Rn → Rn, x 7→ Ax

the determinant of A

det(A) = det

 | | |
A1 A2 · · · An

| | |

 where Aj = LA(ej)

measures how much the map LA deforms the unit cube formed by e1, ..., en.
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6.4 Cramer’s rule and A−1

Let us consider a system of n linear equations for n unknowns

Ax = b.

Theorem 6.4.1. Let A be a n× n matrix with nonzero determinant. Then, for
any b ∈ Fn, the system of linear equations Ax = b has a unique solution x
whose ith entry is

xi =
det(Ai(b))

det(A)

where Ai(b) is the matrix obtained by replacing the ith column of A with b.

Proof. Let B be the matrix obtained from In by replacing ith column by x. Note
that Aei is the ith column of A. Then, the product AB is

A

 | | |
e1 · · · x · · · en
| | |

 =

 | | |
A1 · · · Ax · · · An

| | |

 .

Then, after replacing Ax by b, take the determinant to obtain

det(A)det(B) = det(Ai(b)).

The statement follows from det(B) = xi.

Theorem 6.4.2. A square matrix A is invertible if and only if det(A) ̸= 0.

Proof. (⇒) This is the first statement of Corollary 6.3.8. (⇐) Let A be a n × n

matrix with nonzero determinant. By Theorem 6.4.1, the systems Ax = ej have
unique solutions

Ax1 = e1, Ax2 = e2, ... , Axn = en.

Then, we have

A

 | |
x1 · · · xn
| |

 = In.



6.4 CRAMER’S RULE AND A−1 77

Therefore, by Proposition 6.2.3, the inverse of A is

A−1 =

 | |
x1 · · · xn
| |

 .

Theorem 6.4.3. Let A be a n× n matrix. If det(A) ̸= 0 then the (i, j) entry of
A−1 is

(−1)i+j det(Aji)

det(A)

where Aji is the (n − 1) × (n − 1) matrix obtained from A by erasing the jth
row and the ith column.

Proof. By solving Axj = ej for 1 ≤ j ≤ n, we can find a n×n matrix X such that
AX = In. Then, the ith entry of the vector xj is, by Cramer’s rule,

xij =
detAi(ej)

det(A)
.

The statement follows from the observation

detAi(ej) = (−1)i+j det(Aji).

Example 6.4.4.[
a b

c d

]−1
=

1

ad− bc

[
d −b

−c a

]

a11 a12 a13

a21 a22 a23

a31 a32 a33


−1

=
1

det(A)



∣∣∣∣∣a22 a23

a32 a33

∣∣∣∣∣ −

∣∣∣∣∣a12 a13

a32 a33

∣∣∣∣∣
∣∣∣∣∣a12 a13

a22 a23

∣∣∣∣∣
−

∣∣∣∣∣a21 a23

a31 a33

∣∣∣∣∣
∣∣∣∣∣a11 a13

a31 a33

∣∣∣∣∣ −

∣∣∣∣∣a11 a13

a21 a23

∣∣∣∣∣
∣∣∣∣∣a21 a22

a31 a32

∣∣∣∣∣ −

∣∣∣∣∣a11 a12

a31 a32

∣∣∣∣∣
∣∣∣∣∣a11 a12

a31 a32

∣∣∣∣∣
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