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Preface

The three articles in this volume 2 of the Anam Lecture Notes in Mathematics
are the results of the authors’ ongoing efforts to deliver the contents of discrete
differential geometry, which is a field in its nascence, to a broader audience
after they presented the materials at the “Introductory Workshop on Discrete
Differential Geometry”, held at Korea University, January 21-24, 2019.

Rooted in the integrability of differentiable objects in geometry, discrete dif-
ferential geometry is of deep mathematical interest, and has gained interest from
prominent mathematicians around the world. Furthermore, it is a field that
readily bridges the gap between pure mathematics and applications due to its
connection to architecture, computer graphics, and crystal structures, to name
a few. Since the field is relatively new, it is often difficult to find well presented
introductory texts or lectures on discrete differential geometry. The aim of this
volume is to provide any researcher or student with well-designed introductory
materials on the basics of discrete differential geometry. I hope that the materials
will be accessible and (hopefully) interesting to audience of wide mathematical
background, from undergraduate students to active researchers.

Finally, I want to express my many thanks to Joseph Cho, who has devoted
his valuable time and energy in making the workshop successful and this volume
possible.

Seoul, Republic of Korea Seong-Deog Yang

February, 2020
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Chapter 1

A first step to two topics in
discretizations of surfaces in
Euclidean space

Masashi Yasumoto
Osaka City University Advanced Mathematical Institute, 3-3-138, Sug-
imoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
yasumoto@sci.osaka-cu.ac.jp

Abstract

A new research field “Discrete Differential Geometry” is rapidly develop-
ing from various perspectives. In this note we briefly introduce two classes
of surfaces with special condition, and introduce a first step to discretization
of surfaces based on integrable systems approaches.

1 Introduction

The study of surfaces is classical in differential geometry. In particular, since
surfaces with special curvature condition have various connections with other
research fields, they are central topics on this subject. Some comprehensive
references are [14], [20], [21], [23] for example.

Furthermore, the research on integrable systems has various connections with
other research fields. For example, as will be seen later, the compatibility condition

S.-D. Yang (ed.), An introduction to discrete differential geometry.
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1. INTRODUCTION

for surfaces with constant negative Gaussian curvature is the sine-Gordon equation

ωuv =
1

ρ2
sinω,

where ω ia a real-valued function depending on two real variables u, v, and ρ is
nonzero real constant. The sine-Gordon equation is a famous nonlinear integrable
(solvable) equation discovered by Bour [7], and it is known as the first integrable
equation. Now the sine-Gordon has applications to other contexts (see [1] for
example).

However, although a large amount of works on integrable systems has been in-
vestigated, there is no unifying definition of integrable systems. Many researchers
attempt to give a unified framework of the theory of integrable systems, and some
common features are found (see [18] for example). Over the last three decades,
an approach to understand integrable systems from differential and discrete geo-
metric perspectives has been launched. For example, as already mentioned, the
sine-Gordon equation originates from a problem of surfaces with constant negative
Gaussian curvature, and a procedure to obtain a new solution to the sine-Gordon
equation comes from a geometric observation. This procedure is now called the
Bäcklund transformation, and it is one of the integrable transformations in the
context of integrable systems. Furthermore, as will be discussed in Subsection 3.5,
a sequence of Bäcklund transformations produces a discrete geometric structure.
Therefore, geometry behind integrable systems plays a pivotal role in the subject.
There are several monographs in this subject, for example, see [6], [15], [19].

In this note we introduce the following two classes of surfaces with special
geometric condition to understand two papers by Bobenko, Pinkall [4], [5]:

(1) Surfaces with constant negative Gaussian curvature in Euclidean 3-space
R3. Such surfaces are called the K-surfaces.

(2) Surfaces parametrized by conformal curvature line coordinates. Such sur-
faces are called the isothermic surfaces.

The spirit of discrete differential geometry is scattered into these papers, and they
are relatively accessible to geometers or those who are interested in this subject.
This survey article is devoted to the preparation to read these articles.

This note consists of two parts. The first part is devoted to the theory of K-
surfaces, that is based on the author’s lectures for master students at Osaka City
University in Japanese academic year 2017. The second part briefly introduces

2



2. INGREDIENTS FROM DIFFERENTIAL GEOMETRY OF SURFACES

a theory of isothermic surfaces, that is based on the author’s mini-lectures at
Summer School 2018 in Fukuoka “Geometric shape generation” held at Kyushu
University (September 10-14, 2018) and at the introductory workshop on discrete
differential geometry held at Korea University (January 21-24, 2019).

Acknowledgements

The author would like to thank Professors Miyuki Koiso and Seong-Deog Yang
for giving him great opportunities to explain introductory topics on the study of
discrete differential geometry. In particular, Professor Seong-Deog Yang gave the
author a chance to write a survey article of these lectures. The author hopes that
this article would be helpful for students and researchers interested in this subject.
Also, the author is grateful to Professor Wayne Rossman and Dr. Joseph Cho for
enjoyable conversations on the article. This work was partly supported by the
Grant-in-Aid for JSPS Fellows: Grant Number 26-3154, 19J02034, JSPS Grant-in-
Aid for Scientific Research on Innovative Areas “Discrete Geometric Analysis for
Materials Design”: Grant Number 18H04489, and Osaka City University Advanced
Mathematical Institute (MEXT Joint Usage/Research Center on Mathematics
and Theoretical Physics).

2 Ingredients from differential geometry of surfaces

In this section we overview basic notions of differential geometry of surfaces in
the 3-dimensional Euclidean space. Throughout this paper, the 3-dimensional
Euclidean space with standard Euclidean metric ⟨·, ·⟩ and the Euclidean norm
∥ · ∥ is denoted by R3. Let

f : D (⊂ R2) → R3

∈ ∈

(u, v) ↦→ f(u.v)

be an immersion of C∞, and let ν : D → S2 := {x ∈ R3 | ∥x∥ = 1} be its unit
normal vector field defined by

ν =
fu(u, v)× fv(u, v)

∥fu(u, v)× fv(u, v)∥

(︃
f∗(u, v) :=

∂f

∂∗ , ∗ = u, v

)︃
.

The first and second fundamental fomrs If , IIf are expressed by

If = Edu2 + 2Fdudv +Gdv2, IIf = Ldu2 + 2Mdudv +Ndv2

3



2. INGREDIENTS FROM DIFFERENTIAL GEOMETRY OF SURFACES

and the first and second fundamental matrices I, II are defined by

I =

(︄
E F

F G

)︄
, II =

(︄
L M

M N

)︄

where the coefficients of the first and second fundamental forms are defined by

E = ∥fu(u, v)∥2, F = ⟨fu(u, v), fv(u, v)⟩, G = ∥fu(u, v)∥2,
L = ⟨fuu(u, v), ν⟩, M = ⟨fuv(u, v), ν⟩, N = ⟨fvv(u, v), ν⟩(︄

f∗⋆(u, v) =
∂2f

∂ ∗ ∂⋆ , ∗, ⋆ = u, v

)︄
.

Defining S := I−1II, we define Gaussian and mean curvatures Kf , Hf of f by

Kf = det(S), Hf =
1

2
trace(S),

and the eigenvalues κ1, κ2 of S are called the principal curvatures of f .

To investigate K-surfaces in R3 in the next section, we introduce the following
fundamental theorem, that is now called the “Theorema Egregium” of Gauss.

Theorem 2.1. The Gaussian curvature Kf of an immersion f can be expressed
by only the coefficients of the first fundamental forms E, F , G, and their partial
derivatives.

Although the proof of this theorem can be found in various references (for
example, [14], [23]), as an introductory article, we give an outline of the proof.
Using the coefficients of first and second fundamental forms, we can express

fuu = Γ1
11fu + Γ2

11fv + Lν,

fuv = Γ1
12fu + Γ2

12fv +Mν,

fvv = Γ1
22fu + Γ2

22fv +Nν,

where Γi
jk (i.j, k = 1, 2) are the Christoffel symbols. The following lemma is

immediate:

Lemma 2.2. Γi
jk can be expressed by E, F , G, and their partial derivatives.

4



2. INGREDIENTS FROM DIFFERENTIAL GEOMETRY OF SURFACES

Proof. Here we only see Γ1
11 and Γ2

11. By definition of the coefficients of the first
fundamental form, we can easily show that

⟨fuu, fu⟩ =
Eu

2
, ⟨fuv, fv⟩ =

Ev

2
, ⟨fuv, fv⟩ =

Gu

2
, ⟨fvv, fv⟩ =

Gv

2
,

⟨fuu, fv⟩ = Fu − Ev

2
, ⟨fvv, fv⟩ = Fu − Gu

2
.

Substituting fuu = Γ1
11fu + Γ2

11fv + Lν into the above equations, we have⎧⎪⎨⎪⎩
EΓ1

11 + FΓ2
11 =

Eu

2

FΓ1
11 +GΓ2

11 = Fu − Ev

2

⇐⇒
(︄
E F

F G

)︄(︄
Γ1
11

Γ2
11

)︄
=

⎛⎜⎝ Eu

2

Fu − Ev

2

⎞⎟⎠
Thus we show that Γ1

11 and Γ2
11 can be expressed by E, F , G, and their partial

derivatives. The others can be shown similarly, proving the lemma.

We go back to a proof of Theorem 2.1. Consider the following conditions

(fuu)v = (fuv)u, (fuv)v = (fvv)u .

Then we have

(fuu)v = (Γ1
11fu + Γ2

11fv + Lν)v

= {(Γ1
11)v + Γ1

11Γ
1
12 + Γ2

11Γ
1
22 − Ls12}fu

+ {(Γ2
11)v + Γ1

11Γ
2
11 + Γ2

11Γ
2
22 − Ls22}fv

+ (MΓ1
11 +NΓ2

11 + Lv)ν,

where sij (i, j = 1, 2) are defined by

(︄
s11 s12
s21 s22

)︄
= I−1II = S. Similarly,

(fuv)u = {(Γ1
12)u + Γ1

11Γ
1
12 + Γ1

12Γ
2
12 −Ms11}fu

+ {(Γ2
12)u + Γ2

11Γ
1
12 + (Γ2

12)
2 −Ms21}fv

+ (LΓ1
12 +MΓ2

12 +Mu)ν.

Since fu, fv, and ν are linearly independent, we have

(Γ2
11)v + Γ1

12Γ
2
11 + Γ2

11Γ
2
22 − Ls22 = (Γ2

12)u + Γ2
11Γ

1
12 + (Γ2

12)
2 −Ms21

5



3. K-SURFACES IN R3

Substituting s21 and s22 explicitly into the above equation, we have

−E(LN −M2)

EG− F 2
= (Γ2

12)u − (Γ2
11)v + Γ2

11Γ
1
12 + (Γ2

12)
2 − Γ1

11Γ
2
12 − Γ2

11Γ
2
22

⇔ Kf = − 1

E
{(Γ2

12)u − (Γ2
11)v + Γ2

11Γ
1
12 + (Γ2

12)
2 − Γ1

11Γ
2
12 − Γ2

11Γ
2
22}.(2.1)

By Lemma 2.2, we can show that Kf can be expressed by E, F , G, and their
partial derivatives, proving the Theorema Egregium of Gauss. Equation (2.1) is
called the Gauss equation. Furthermore, comparing the coefficients of ν, we have
that

(2.2) Lv −Mu = LΓ1
12 +M(Γ2

12 − Γ1
11)−NΓ2

11.

Similarly, computing (fuv)v = (fvv)u and comparing the coefficients of ν, we have
that

(2.3) Mv − Lu = LΓ1
22 +M(Γ2

22 − Γ1
12)−NΓ2

12 .

Equations (2.2), (2.3) are called the Codazzi (or Codazzi-Mainardi) equations.

3 K-surfaces in R3

In this subsection we discuss K-surfaces in R3. They are classical geometric
objects of interest. For example, a famous result is that no complete regular
K-surface can be isometrically immersed into R3. Details can be found in [14].
Furthermore, an interesting geometric property is that K-surfaces admit special
coordinates called the asymptotic Chebyshev coordinates. Choosing such special
coordinates often produces integrable equations, and there exists special geometry
behind certain integrable equation. In this sense, analyzing certain integrable
system is equivalent to investigating the corresponding geometry. The interaction
between geometries and integrable systems is called “integrable geometry”. Deeper
adventure of integrable geometry can be found in [6], [15] for example.

3.1 Asymptotic Chebyshev nets

It is well-known that surfaces with negative Gaussian curvature admit the follow-
ing special coordinates. Existence of such coordinates can be found in [23] for
example.

6



3. K-SURFACES IN R3

Theorem 3.1. If Kf is negative (not necessarily constant), there exist asymptotic
coordinates (u, v) such that L = N = 0.

Henceforth, we assume that Kf is negative and f is parametrized by asymp-
totic coordinates (u, v). Admitting asymptotic coordinates makes our arguments
much simpler. We define ρ : D → R>0 := {r ∈ R| r > 0} by

K = − M2

EG− F 2
=: − 1

ρ2
,

and we define two functions a, b : D → R>0 by a2 := E/ρ2, b2 := G/ρ2. Set the
angle ω(u, v) between two asymptotes, then

I =

(︄
ρ2a2 ρ2ab cosω

ρ2ab cosω ρ2b2

)︄
, II =

(︄
0 ρab sinω

ρab sinω 0

)︄
.

The Gauss equation (2.1) becomes

(3.1) ωuv +
1

2

(︃
ρub

ρa
sinω

)︃
u

+
1

2

(︃
ρva

ρb
sinω

)︃
v

− ab sinω = 0 .

Furthermore, the Codazzi equations (2.2), (2.3) become

(3.2)

⎧⎪⎪⎨⎪⎪⎩
av(u, v) +

ρv(u, v)

2ρ(u, v)
a(u, v)− ρu(u, v)

2ρ(u, v)
b(u, v) cosω(u, v) = 0 ,

bu(u, v) +
ρu(u, v)

2ρ(u, v)
b(u, v)− ρv(u, v)

2ρ(u, v)
a(u, v) cosω(u, v) = 0 .

Now we assume that Kf is negative constant. Then Equation (3.2) becomes

av(u, v) = 0, bu(u, v) = 0 ,

implying that a(u, v) = a(u) and b(u, v) = b(v). This result indicates that the
norms of fu(u, v) and fv(u, v) depends only on u and v, respectively. Furthermore,
Equation (3.1) becomes

(3.3) ωuv(u, v)− a(u)b(v) sinω(u, v) = 0 .

Therefore, under the following reparametrization

du′ =
√︁
E(u)du, dv′ =

√︁
G(v)dv ,

7



3. K-SURFACES IN R3

Equation (3.3) can be reduced to the famous sine-Gordon equation

(3.4) ωu′v′ − 1

ρ2
sinω = 0 .

In conclusion, we have the following theorem:

Theorem 3.2. A surface f parametrized by asymptotic coordinates (u, v) is a K-
surface if and only if the norms of fu and fv depends only on u and v, respectively.
Such asymptotic coordinates are called asymptotic Chebyshev coordinates, and a
surface admitting asymptotic Chebyshev coordinates is called a Chebyshev net.
Furthermore, the compatibility condition for K-surfaces can be chosen as the
sine-Gordon equation (3.4).

As typified by this result, existence of special coordinates characterizes dif-
ferential geometry of surfaces behind certain integrability. This enables us to
investigate integrabilities using the corresponding geometries, and possibly en-
ables us to analyze and discover common features appearing in the research of
integrable systems, unifying with all the schemes of the integrable systems.

Note that, even if we replace a with λa and b with λ−1b at the same time for
some constant λ ∈ R>0, Equation (3.4) remains unchanged. This implies that the
sine-Gordon equation admits one-parameter family of its solutions. Henceforth,
without loss of generality, we may assume that (u, v) = (u′, v′). As an application
of the fundamental theorem for surfaces, we can construct one-parameter family
fλ of a K-surface in R3 with first and second fundamental forms being

(3.5) Ifλ = λ2ρ2a2du2 +2ρ2ab cosωdudv+ λ−2ρ2b2dv2, IIfλ = 2ρab sinωdudv.

3.2 2× 2 Lax pairs for K-surfaces

In this section we introduce 2× 2 matrix representations for K-surfaces that are
called 2× 2 Lax pairs. A key idea is to identify R4 with the set of quaternions H.
Let us denote

H :=

⎧⎨⎩x0 + x1i+ x2j+ x3k

⃓⃓⃓⃓
⃓ xj ∈ R (i = 0, 1, 2, 3)

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j

⎫⎬⎭ .

For an element a = a0 + a1i+ a2j+ a3k ∈ H, we define

a := a0 − a1i− a2j− a3k, |a| :=
√
aa,

Re(a) := a0, Im(a) := a1i+ a2j+ a3k,

8



3. K-SURFACES IN R3

In particular, R3 can be indentified with the set of imaginary quaternions

ImH := {x1i+ x2j+ x3k ∈ H | xi ∈ R (i = 1, 2, 3)}

by the following identification:

R3 ∼= ImH
∈ ∈

x = (x1, x2, x3)
t ↔ x̂ = x1i+ x2j+ x3k

Set x, y ∈ R3 and the corresponding imaginary quaternions x̂, ŷ ∈ ImH, respec-
tively. For simplicity, x̂ × ŷ is denoted by the imaginary quaternionic value
corresponding to x× y ∈ R3. Then we can easily show that

x̂ŷ = x̂× ŷ − ⟨x, y⟩.

In particular, using the above relation, we have ŷx̂ = x̂ŷ, implying

⟨x, y⟩ = −1

2
(x̂ŷ + ŷx̂).

If readers are interested in surface geometry in terms of quaternionic forms, the
author recommends to read [9] for example.

Hereinafter we further consider the 2×2 matrix forms of each element in R3 ∼=
ImH to derive a 2×2 Lax pairs for K-surfaces. In the context of integrable systems
(or solitons), such matrix representations are important, since large amount of
solvable nonlinear partial differential integrable equations can be expressed by the
compatibility conditions for systems of linear matrix-valued (not necessarily 2×2)
linear differential equations. For the remaining part of this subsection, we derive
2× 2 Lax pairs for K-surfaces. In the previous subsection, we had already seen
the sine-Gordon equation (3.4). We will see that such equations can be derived
by the compatibility condition for the Lax pairs explicitly.

Let us consider the identification between H and certain set of 2× 2 matrices
by identifying

1 ↔ I, i ↔
(︄

0 −
√
−1

−
√
−1 0

)︄
, j ↔

(︄
0 −1

1 0

)︄
, k ↔

(︄
−
√
−1 0

0
√
−1

)︄

with the standard matrix multiplication, where I is the 2× 2 identity matrix. In
fact, we can easily show that

9



3. K-SURFACES IN R3

(︄
0 −

√
−1

−
√
−1 0

)︄2

=

(︄
0 −1

1 0

)︄2

=

(︄
−
√
−1 0

0
√
−1

)︄2

= −I,

ij ↔
(︄

0 −
√
−1

−
√
−1 0

)︄(︄
0 −1

1 0

)︄
=

(︄
−
√
−1 0

0
√
−1

)︄
↔ k,

jk ↔
(︄
0 −1

1 0

)︄(︄
−
√
−1 0

0
√
−1

)︄
=

(︄
0 −

√
−1

−
√
−1 0

)︄
↔ i,

ki ↔
(︄
−
√
−1 0

0
√
−1

)︄(︄
0 −

√
−1

−
√
−1 0

)︄
=

(︄
0 −1

1 0

)︄
↔ j.

These equalities can be regarded as the same properties as quaternions. Thus we
can consider the following identification:

(x1, x2, x3)
t ↔ x1i+ x2j+ x3k ↔

(︄
−
√
−1x3 −

√
−1x1 − x2

−
√
−1x1 + x2

√
−1x3

)︄

= = =

x x̂ X

Thus each element x ∈ R3 can be identified with the element in the Lie algebra
su2 of a Lie group

SU2 :=

⎧⎪⎨⎪⎩
(︄
a b

−b a

)︄
∈ SL2(C)

⃓⃓⃓⃓
⃓⃓ aa+ bb = 1

⎫⎪⎬⎪⎭ .

Using the matrix forms, the inner product ⟨x, y⟩ of x, y is calculated by

⟨x, y⟩ = −1

4
trace(XY + Y X) = −1

2
trace(XY ),

where X and Y are matrix forms corresponding to x and y, respectively. The
advantage to use the matrix forms is that we are able to treat rotations of R3. In
fact, the following result does hold.

Theorem 3.3. For any x ∈ R3 and its corresponding matrix X ∈ su2, let Φ be
an element in SU2. Then ΦXΦ−1 corresponds to a vector Ax ∈ R3 for some
A ∈ SO3(R).

Proof. This result can be derived by a direct computation, In fact, setting

Φ =

(︄
a1 +

√
−1a2 b1 +

√
−1b2

−b1 +
√
−1b2 a1 −

√
−1a2

)︄
∈ SU2,

10



3. K-SURFACES IN R3

we have

ΦXΦ−1 =

(︄
−
√
−1x̃3 −

√
−1x̃1 − x̃2

−
√
−1x̃1 + x̃2

√
−1x̃3

)︄
where (x̃1, x̃2, x̃3)

t = Ax with

A =

⎛⎜⎝a21 − a22 − b21 + b22 −2a1a2 − 2b1b2 2a1b1 − 2a2b2
2a1a2 − 2b1b2 a21 − a22 − b21 + b22 2a2b1 + 2a1b2
−2a1b1 − 2a2b2 2a2b1 − a1b2 a21 + a22 − b21 − b22

⎞⎟⎠ ∈ SO3(R),

proving the proposition.

Our mission to describe 2 × 2 Lax pairs for one parameter family fλ of a
K-surface f = f1 with first and second fundamental forms satisfying Equation
(3.5). Henceforth, we regard fλ as an element in su2. Since the angle between fλu
and fλv is ω, we can define a matrix Φλ(u, v) = Φλ ∈ SU2 so that

fλu = λρaΦλ

⎧⎨⎩cos
ω

2

(︄
0 −

√
−1

−
√
−1 0

)︄
− sin

ω

2

(︄
0 −1

1 0

)︄⎫⎬⎭ (Φλ)−1

= λρaΦλ

(︄
0 −

√
−1e

√
−1ω/2

−
√
−1e−

√
−1ω/2 0

)︄
(Φλ)−1,(3.6)

fλv = λ−1ρbΦλ

⎧⎨⎩cos
ω

2

(︄
0 −

√
−1

−
√
−1 0

)︄
+ sin

ω

2

(︄
0 −1

1 0

)︄⎫⎬⎭ (Φλ)−1

= λ−1ρbΦλ

(︄
0 −

√
−1e−

√
−1ω/2

−
√
−1e

√
−1ω/2 0

)︄
(Φλ)−1,(3.7)

νλ = Φλ

(︄
−
√
−1 0

0
√
−1

)︄
(Φλ)−1.

Here we set

Uλ =

(︄
U11 U12

U21 U22

)︄
:= (Φλ)−1Φλ

u, V λ =

(︄
V11 V12
V21 V22

)︄
:= (Φλ)−1Φλ

v .

Since Φλ ∈ SU2, Uλ and Y λ must be trace-free. So we have

U11 + U22 = V11 + U22 = 0.

11



3. K-SURFACES IN R3

The condition ⟨fλu , νλu⟩ = 0 and the calculation

νλu = Φλ
u

(︄
−
√
−1 0

0
√
−1

)︄
(Φλ)−1 +Φλ

(︄
−
√
−1 0

0
√
−1

)︄
((Φλ)−1)u

= Φλ

(︄
0 2

√
−1U12

−2
√
−1U21 0

)︄
(Φλ)−1

imply that ⟨fλu , νλu⟩ = −1

2
trace(fλu ν

λ
u) = λρa{e

√
−1ω/2U21 − e−

√
−1ω/2U12} = 0.

Similarly, we can calculate

⟨fλv , νλv ⟩ = λ−1ρb{e−
√
−1ω/2V21 − e

√
−1ω/2V12} = 0,

⟨fλu , νλv ⟩ = λρa{e
√
−1ω/2V21 − e−

√
−1ω/2V12} = −ρab sinω,

⟨fλv , νλu⟩ = λ−1ρb{e−
√
−1ω/2U21 − e−

√
−1ω/2U12} = −ρab sinω.

Combining these conditions and the compatibility condition (Φλ
u)v = (Φλ

v )u, we
have the 2× 2 Lax pairs for K-surfaces.

Theorem 3.4. We have Φλ
u = ΦλUλ, Φλ

v = ΦλV λ, where

(3.8)

Uλ =

(︄
ωu

4 −
√
−1
2 λae

√
−1ω/2

−
√
−1
2 λae−

√
−1ω/2 −ωu

4

)︄
,

V λ =

(︄
−ωv

4

√
−1
2 λ−1be−

√
−1ω/2

√
−1
2 λ−1be

√
−1ω/2 ωv

4

)︄
.

Furthermore, a celebrating discovery by Sym [22] produces K-surfaces in R3

from solutions to Lax pairs (3.8) for K-surfaces. This is an advantage to treat
surfaces using the 2× 2 matrix forms.

Theorem 3.5. Let Φλ be a solution to Equation (3.8). Then a surface

fλ(u, v) = 2λρ
∂Φλ

∂λ
· (Φλ)−1

is a K-surface satisfying Equations (3.6), (3.7). This formula is called the Sym
formula.

12



3. K-SURFACES IN R3

Proof. By computation, we have

fλu = 2λρ

⎧⎨⎩
(︄
∂Φλ

∂λ

)︄
u

· (Φλ)−1 +
∂Φλ

∂λ
· ((Φλ)−1)u

⎫⎬⎭
= λρaΦλ

(︄
0 −

√
−1e

√
−1ω/2

−
√
−1e−

√
−1ω/2 0

)︄
(Φλ)−1,

fλv = 2λρΦλ ∂V
λ

∂λ
(Φλ)−1

= λ−1ρbΦλ

(︄
0 −

√
−1e−

√
−1ω/2

−
√
−1e

√
−1ω/2 0

)︄
(Φλ)−1,

proving the theorem.

3.3 Bäcklund transformations of sine-Gordon equation and
K-surfaces

In this subsection we introduce an application of differential geometry of K-
surfaces to producing new solutions to the sine-Gordon equation from a given
solution. Now such a procedure is called the Bäcklund transformation. Recently,
Bäcklund transformations for many integrable equations are fundamental tools
in integrable systems. Here, let us emphasize that this first discovery of the
Bäcklund transformations is highly inspiring the theory of integrable systems, and
the machinery of Bäcklund transformations completely comes from differential
geometry of K-surfaces.

Our problem is to construct new K-surface from a given K-surface. Let f be a
K-surface with Kf = −1/ρ2 parametrized by asymptotic Chebyshev coordinates.
Then f̂ is called a Bäcklund transform of f if it satisfies the following three
conditions:

• Each vector f̂ − f is tangent to both f and f̂ .

• ∥f̂ − f∥ = r.

• The angle between ν and ν̂ is constant θ, that is, ⟨ν, ν̂⟩ = cos θ.

First, we construct a Bäcklund transform f̂ of f . Since f is a K-surface parametrized
by asymptotic Chebyshev coordinates, the triad {A,B,C} of

A := fu, B := −fu × ν = − cotωfu + secωfv, C := ν

13



3. K-SURFACES IN R3

forms an orthonormal basis. One can check that

(︂
A B C

)︂
u
=
(︂
A B C

)︂⎛⎜⎝ 0 ωu 0

−ωu 0 −1/ρ

0 1/ρ 0

⎞⎟⎠ ,

(︂
A B C

)︂
v
=
(︂
A B C

)︂⎛⎜⎝ 0 0 − sinω/ρ

0 0 − cosω/ρ

sinω/ρ − cosω/ρ 0

⎞⎟⎠ .

With these conditions, set f̂ := f + r(cosϕA+ sinϕB). Then

f̂u = {1− r(ϕu − ωu) sinϕ}A+ r(ϕu − ωu) cosϕB +
r

ρ
sinϕC,

f̂v = (cosω − rϕv sinϕ)A+ (sinω + rϕv cosϕ)B +
r

ρ
sin(ω − ϕ)C.

Requiring the condition ∥f̂u∥ = ∥f̂v∥ = 1 and setting

β =
ρ

r

⎛⎝1±
√︄
1− r2

ρ2

⎞⎠ =
r

ρ

⎛⎝1∓
√︄
1− r2

ρ2

⎞⎠−1

,

we have

(3.9)

⎧⎪⎪⎨⎪⎪⎩
ϕu = ωu +

β

ρ
sinϕ,

ϕv =
1

βρ
sin(ϕ− ω).

Using these expressions, we have

If̂ = du2 + 2 cos(2ϕ− ω)dudv + dv2.

Furthermore, since the unit normal vector field ν̂ of f̂ is expressed as

ν̂ = − r
ρ
sinϕA+

r

ρ
cosϕB +

(︃
1− rβ

ρ

)︃
C,

we have
IIf̂ =

2

ρ
sin(2ϕ− ω)dudv.

Hence the resulting surface f̂ is a K-surface with Kf̂ = − 1

ρ2
, and we can check

that the f̂ satisfies the condition of Bäcklund transforms, that is,

14
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⟨f̂ − f, ν⟩ = ⟨f̂ − f, ν̂⟩ = 0, ∥f̂ − f∥ = r, ⟨ν, ν̂⟩ = 1− rβ

ρ
.

Finally, we rewrite Equation (3.9). Setting ω̂ := 2ϕ − ω, we can check that ω̂
satisfies

ω̂uv =
1

ρ2
sin ω̂.

And Equation (3.9) can be written as

(Bβ)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︃
ω̂ − ω

2

)︃
u

=
β

ρ
sin

(︃
ω̂ + ω

2

)︃
,(︃

ω̂ + ω

2

)︃
v

=
1

βρ
sin

(︃
ω̂ − ω

2

)︃
.

Equation (Bβ) is called the β-Bäcklund transformation, and we write ω̂ = Bβ(ω).
As already mentioned before, Bäcklund transformations produce new solutions
to the sine-Gordon equation.

3.4 Bianchi permutability of Bäcklund transformations for the
sine-Gordon equation

Here we introduce a permutability of Bäcklund transformations for the sine-
Gordon equation, that is called the Bianchi permutability. The Bianchi per-
mutability produces the fourth solution from a given solution and two distinct
Bäcklund transforms of the given solution, that can be regarded as a nonlinear
version of the superposition principle.

Theorem 3.6 (Bianchi Permutability). Let ω be a solution to the sine-Gordon
equation (3.4), and let ω1, ω2 be two Bäcklund transforms given by

ω1 := Bβ1
ω, ω2 := Bβ2

ω.

Then there exists the fourth solution ω12 such that it is a β2-Bäcklund tarnsform
of ω1 and is a β1-Bäcklund tarnsform of ω2 as well, that is,

ω12 = Bβ2
Bβ1

ω = Bβ1
Bβ2

ω.

The Bianchi permutability indicates that the Bäcklund tarnsformations for
the sine-Gordon equation (3.4) commutes and solutions to Equation (3.4) can be
obtained diagramatically (see Figure 3.1).

15
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Figure 3.1: Bianchi permutability of the sine-Gordon equation

Here we prove the Bianchi permutability of the Bäcklund tarnsformations for
the sine-Gordon equation (3.4). Let ω12 (resp. ω21) be a β2-Bäcklund transform
(resp. β1-Bäcklund transform) of ω1 (resp. ω2). By definition of Bäcklund
tarnsformations, we have

(ω1)u = ωu +
2β1
ρ

sin

(︃
ω + ω1

2

)︃
, (ω2)u = ωu +

2β2
ρ

sin

(︃
ω + ω1

2

)︃
,

(ω12)u = (ω1)u +
2β2
ρ

sin

(︃
ω1 + ω12

2

)︃
, (ω21)u = (ω2)u +

2β1
ρ

sin

(︃
ω2 + ω21

2

)︃
.

Here we assume that ω12 = ω21. Deforming the above equations, we have

β1

{︄
sin

(︃
ω + ω1

2

)︃
− sin

(︃
ω2 + ω12

2

)︃}︄

− β2

{︄
sin

(︃
ω + ω2

2

)︃
− sin

(︃
ω1 + ω12

2

)︃}︄
= 0.

⇐⇒ 2β1 cos

(︃
ω + ω1 + ω2 + ω12

4

)︃
sin

(︃
ω + ω1 − ω2 − ω12

4

)︃
− 2β2 cos

(︃
ω + ω1 + ω2 + ω12

4

)︃
sin

(︃
ω + ω2 − ω1 − ω12

4

)︃
= 0.
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Figure 3.2: Bianchi lattice arising from Bianchi permutbilities of the sine-Gordon
equation

Therefore, we have

tan

(︃
ω12 − ω

4

)︃
=
β2 + β1
β2 − β1

tan

(︃
ω2 − ω1

4

)︃
=⇒ ω12 = ω + 4 tan−1

(︄
β2 + β1
β2 − β1

tan

(︃
ω2 − ω1

4

)︃)︄
.

Here we iterate Bianchi permutabilities as follows: Let ω be a solution to the
sine-Gordon equation (3.4). Now we add the subscript (0, 0) to ω, and define the
following sequence given by the following system

(3.10) ω(i,j) = Bαi
ω(i−1,j), ω(i,j) = Bβj

ω(i,j−1) (αi, βj ∈ R, (i, j) ∈ Z2)

so that the Bianchi permutabilities BβjBαi = BαiBβj hold. For a fixed (u, v) ∈ D,
ω(m,n) can be regarded as a map from Z2 to R. The lattice associated is called
the Bianchi lattice (Figure 3.2).

Furthermore, by a similar argument, we can show the following theorem, that
can be regarded as a higher dimensional version of the Bianchi permutability
theorem.

Theorem 3.7 (Bianchi Cube). Let ω be a solution to Equation (3.4), let ωi

be βi-Bäcklund transforms of ω (i = 1, 2, 3), and set ωij = BiBjω = BjBiω

17
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(i, j = 1, 2, 3). Then there exists ω123 such that

ω123 = B3ω12 = B2ω13 = B1ω23 .

The proof can be given in a similar way to the proof of the Bianchi per-
mutability, so here we omit it. In conclusion, we can create a cube labelled with
ω, ω1, ω2, ω3, ω12, ω13, ω23, ω123 (Figure 3.3), and this can be regarded as a map
from Z3 to R. This cube is called the Bianchi cube.

Figure 3.3: Bianchi lattice arising from Bianchi permutbilities of the sine-Gordon
equation

Note that Bäcklund transformations are found in many nonlinear intergrable
partial differential equations. A central topic on the study of integrable systems
is to find Bäcklund transformations for nonlinear integrable equations.

3.5 Discrete geometric structure in Bianchi permutability

In this subsection we observe discrete geometric properties arising from the
Bianchi permutability of Bäcklund transformations for the sine-Gordon equa-
tion. In the previous subsection, we saw that Bäcklund transformations produce
the Bianchi lattice or cube.

As already mentioned, Bäcklund transformations produce new K-surfaces from
a given K-surface. So it is natural to expect that there is a simple geometric
relation between the original K-surface and its Bäcklund transforms. In fact, by
construction of Bäcklund transforms, we have

f̂ − f = r

{︄
cos

(︃
ω + ω̂

2

)︃
A+ sin

(︃
ω + ω̂

2

)︃
B

}︄
.
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From this, we can show the following identity:

(3.11) f̂ − f = ρ(ν̂ × ν).

Applying Equation (3.11) to the Bianchi lattice, we have the following theorem.

Theorem 3.8. Let f be a K-surface, and let f1, f2 be Bäcklund transforms of f
given by ω1 = Bβ1

, ω2 = Bβ2
ω, respectively. Then there exists the fourth surface

f12 given by ω12, and a quadrilateral (f, f1, f2, f12) is a bent parallelogram, that
is,

(3.12) ∥f1 − f∥ = ∥f12 − f2∥, ∥f2 − f∥ = ∥f12 − f1∥,

but (f, f1, f2, f12) is not necessarily coplanar. Furthermore, if we write a surface
fm,n corresponding to ωm,n, the five points fm,n, fm+1,n, fm,n+1, fm−1,n, fm,n−1

are coplanar.

Iterating the above procedure, we obtain a discrete surface fm,n : Z2 → R3

satisfying Theorem 3.8. Furthermore, we are also able to apply Theorem 3.8
to the Bianchi cube, we have a discrete map fℓ,m,n : Z3 → R3 such that the
restriction of fℓ,m,n to the Z2 × {0}, Z× {0} × Z, and {0} × Z2 gives a Bianchi
lattice of a K-surface.

Thus, a magic of the Bianchi permutbility can be easily understood by discrete
geometric properties. In fact, at each point of f , f itself and four vertices adjacent
to f are coplanar, and each quadrilateral (f, f1, f12, f2) becomes a bent parallel-
ogram. As typified by the seminal work by Bobenko, Pinkall [5], finding such
discrete geometric structures and describing a discrete surface theory preserving
such discrete discrete geometric structures (equivalently, discrete integrabilities)
play pivotal roles in the study of discrete differential geometry.

4 Isothermic surfaces in R3

Stepping away from K-surfaces, in this section, we introduce isothermic surfaces
in R3. To avoid confusion for readers, let us mention the terminology “isother-
mic”. A similar terminology “isothermal” is used in a similar context. Isothermal
immersions are the same as conformal immersions. On the other hand, isother-
mic surfaces are surfaces admitting conformal curvature line coordinates, that is,
f : D → R3 is an isothermic surface if it satisfies

If = E(du2 + dv2), IIf = Ldu2 +N2dv2.
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Figure 3.4: Bianchi cube of a K-surface. Each quadrilateral becomes a bent
parallelogram, and it satisfies the same edge length condition.

We call such coordinates the isothermic coordinates. Such surfaces were at first
discussed by Bour [7]. An important geometric property was given by Cayley
[11], saying any isothermic surface is divisible into “infinitesimal” squares by their
curvature lines. We will discuss this property in Subsection 4.4.

In contrast to the fact that any surface admits conformal coordinates or cur-
vature line coordinates1 (see [23] for example), all the surfaces do not necessarily
admit isothermic coordinates. So we are interested in what surfaces are included
in the class of isothermic surfaces.

When considering isothermic surfaces, it is convenient to use the complex
coordinate z = u+

√
−1v. Here we use the following symbols

∂f

∂z
= fz :=

1

2

(︂
fu −

√
−1fv

)︂
,

∂f

∂z̄
= fz̄ :=

1

2

(︂
fu +

√
−1fv

)︂
.

dz := du+
√
−1dv, dz̄ := du−

√
−1dv.

A complex-valued function G = G(z, z̄) is holomorphic if Gz̄ = 0, that is, G =

G(z). Let us begin with the following fact (see [3]):

1In this case we exclude umbilic points. Umbilic points are points where two principal
curvatures of f coincide.
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Proposition 4.1. Let f be a conformal immersion satisfying If = E(du2+ dv2).
Then f is isothermic if and only if the coefficient of Hopf differential

Q(u, v) = Q(z, z̄) := ⟨fzz, ν⟩ =
1

4
(L−N − 2

√
−1M)

can be chosen as a real-valued function. More generally, a surface is isothermic
if and only if there exists a holomorphic quadratic differential h(z)dz2 such that

Q(z, z̄) = h(z)R(z, z̄),

where R(z, z̄) is a real-valued function.

The proof is immediate. In fact, defining a new complex coordinate w by

dw =
√︁
h(z)dz,

we have an isothermic immersion. Thus, to show the isothermicity, we only have
to check that the corresponding Hopf differential satisfies the above condition.
Here we see several examples of isothermic surfaces.

Example 4.2. Away from singular points (points where rank(df) < 2), every
surface of revolution is isothermic. In this case we only have to reparametrize
a profile curve so that a surface becomes isothermic. Similarly, every quadric is
isothermic.

Example 4.3. Away from umbilic points, every minimal and surface with nonzero
constant mean curvature (CMC surfaces, for short) is isothermic. In fact, if we
start from a conformal minimal or CMC immersion into R3, we know that the
corresponding Hopf differential becomes holomorphic.

Other classes of isothermic surfaces are introduced in [3]. As typified by these
examples, isohermic surfaces contain important classes of surfaces.

4.1 Möbius invariance of isothermicities

Isothermic surfaces have the following property that is essential when describing
a discretization of isothermic surfaces.

Theorem 4.4. Let f be an isothermic surface, and M : R3 → R3 be a Möbius
transformation of R3. Then M ◦ f is also isothermic.

21



4. ISOTHERMIC SURFACES IN R3

The above result implies that isothermicity is preserved under Möbius trans-
formation. The Möbius transformation of R3 consists of translations, dilations,
rotations, and inversions. Here we outline the proof of Theorem 4.4. If M is a
translation, dilation, or rotation, the proof is immediate. So we only consider
only the case that M is an inversion, that is, we consider

M ◦ f =
f

∥f∥2 .

Then we can easily check that

(M ◦ f)u =
∥f∥2fu − 2⟨f, fu⟩f

∥f∥4 , (M ◦ f)v =
∥f∥2fv − 2⟨f, fv⟩f

∥f∥4 ,

implying that IM◦f = ∥f∥−4If . Futhermore, the remaining task is to show that
(M ◦ f)uv ∈ span{(M ◦ f)u, (M ◦ f)v}. A direct computation show that

(M ◦f)uv = −4⟨f, fv⟩
∥f∥2 (M ◦f)u+

2⟨f, fv⟩fu − 2⟨f, fu⟩fv − 2⟨f, fuv⟩f + ∥f∥2fuv
∥f∥4 .

Since f is isothermic, fuv can be expressed as fuv = c1fu+c2f2 for some c1, c2 ∈ R.
Substituting fuv into the above equation, we have

(M ◦ f)uv =

(︃
c1 −

2⟨f, fv⟩
∥f∥2

)︃
(M ◦ f)u +

(︃
c2 −

2⟨f, fu⟩
∥f∥2

)︃
(M ◦ f)v,

proving the theorem.

More generally, we are able to extend this result to 3-dimensional spaces
that are conformal to R3 (for example, spherical 3-space and hyperbolic 3-space),
leading us to the natural idea to describe a unified description of isothermic
surfaces in conformal geometry. An elementary introduction to surface theory in
conformal geometry is introduced by Cho-Rossman’s article in this volume.

4.2 Cross ratio of four points in space

As shown in Theorem 4.4, isothermicity is Möbius invariant. We further discuss a
characterization of isothermic surfaces in R3 in terms of Möbius invariant flavors.
For this, we introduce a notion of cross ratio of four points in space. In this
subsection, we identify each element in R3 with element in su2 (see Subsection
3.2).
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Definition 4.5. Let A,B,C,D be points in R3 ∼= su2. Then a pair {q, q̄} (q ∈ C)
of the eigenvalues of the following matrix

Q(A,B,C,D) := (A−B) · (B − C)−1 · (C −D) · (D −A)−1

is called the cross ratio of A,B,C,D.

Henceforce, we write exactly one of the eigenvalues q as q := cr(A,B,C,D),
and we call cr(A,B,C,D) the cross ratio of A,B,C,D. This is a generalization of
the standard cross ratio of four points on the complex plane. An important fact is
that the cross ratio of four points in space is also Möbius invariant. Furthermore,
the following proposition holds.

Proposition 4.6. Let A,B,C,D be points in R3, and let cr(A,B,C,D) be the
cross ratio of A,B,C,D. Then cr(A,B,C,D) is nonzero real if and if A,B,C,D
are concircular or they lie on a line.

The proof can be directly shown. Here we only see a sketch of the proof.
Since A,B,C,D are points in R3, there exists a sphere passing through these
four points. By Möbius transformations, this sphere can be regarded as S2, and
A,B,C,D can be projected to C. Thus Proposition 4.6 can be shown directly
from the standard cross ratio property.

4.3 Christoffel transformations for isothermic surfaces

Here we introduce a geometric integrable transformation for isothermic surfaces
called the Christoffel transformation.

Definition 4.7. Let f : D → R3 be an isothermic surface. Then there exists an
isothermic surfaces f∗ : D → R3 such that

f∗u =
fu

∥fu∥2
, f∗v = − fv

∥fv∥2
(︃
⇔ df∗ =

fu
∥fu∥2

du− fv
∥fv∥2

dv

)︃
holds. The new surface f∗ is called a Christoffel transform of f . We write
f∗ := Cf , and C is called the Christoffel transformation.

The original definition of Christoffel transforms is as follows: Let f be an
isothermic surface in R3. Then f∗ is a Christoffel transform of f if

• f∗ is defined on the same domain as f ,

23



4. ISOTHERMIC SURFACES IN R3

• f∗ has the same conformal structure as f ,

• f and f∗ have parallel tangent planes with opposite orientations at corre-
sponding points.

On the other hand, we can show that Christoffel transforms in Definition 4.7
satisfy the above conditions, if f∗ exists. Furthermore, any Christoffel transform
of an isothermic surface can be expressed as in Definition 4.7 and df∗ can be also
expressed as

df∗ = ρ(dν +Hfdf),

where ρ = ρ(u, v) is a non zero real-valued function, and (f∗)∗ = f . Here we use
Definition 4.7 as the definition of Christoffel transforms. Details can be found in
[15], [12] for example.

The existence of the Christoffel transform of an isothermic surface can be easily
shown. In fact, we only have to check the compatibility condition (f∗u)v = (f∗v )u.
On the other hand, the converse also holds.

Theorem 4.8. Isothermicity of a surface is equivalent to the existence of the
Christoffel transform.

As already mentioned, showing one direction is immediate. On the other
hand, showing the other direction, that is, it is not trivial to show the existence
of isothermic coordinates under the assumption of the existence of the Christoffel
transform. Here we only see a sketch of the proof:

• Assume that f is parametrized by curvature line coordinates.

• By the above assumption, the Codazzi equations (2.2), (2.3) can be simpli-
fied as

(4.1) 2(κ1)u =
Gu

G
(κ1 − κ2), 2(κ2)v =

Ev

E
(κ2 − κ1),

where κ1, κ2 are principal curvatures of f .

• Using the existence of the Christoffel transforms, and ρuv = ρvu, and
Equations (4.1), finally we have(︃

log
E

G

)︃
uv

= 0,
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implying that there exist positive real-valued function a = a(u) and b = b(v)

depending only on u and v, respectively, so that

(a(u))2E = (b(v))2G.

4.4 Characterizing isothermic surfaces using cross ratio

Here we characterize isothermic surfaces using the cross ratio in space. As already
shown in Theorem 4.4, isothermicity is preserved under Möbius transformation.
Furthermore, cross ratio in space is also preserved under Möbius transformations.
So it is natural to expect that there is certain relation between isothermic surfaces
and the cross ratio.

First we see an equivalent condition for surfaces to be isothermic. Away from
umbilic points, we can choose curvature line coordinates (u, v), that is, the first
and second fundamental forms satisfy

If = Edu2 +Gdv2, IIf = Ldu2 +Ndv2.

Then we can stretch the curvature line coordinates (ũ, ṽ) := (ũ(u), ṽ(v)), where
ũ = ũ(u) and ṽ = ṽ(v) depend only on u and v, respectively, and ũ and ṽ are
strictly monotone functions on u and v, respectively. One can easily check that
(ũ, ṽ) are also curvature line coordinates. Then the surface f is isothermic if
and only if there exists curvature line coordinates (ũ, ṽ) so that they are also
isothermic coordinates, that is, ∥fũ∥2 = ∥fṽ∥2. By direct computation, we have

(︃
du

dũ

)︃2

E =

(︃
dv

dṽ

)︃2

G ⇔ E

G
=
α(u)

β(v)

(︄
α(u) =

(︃
dũ

du

)︃2

, β(v) =

(︃
dṽ

dv

)︃2
)︄
.

As already mentioned, Cayley found that any isothermic surface is divisible into
“infinitesimal” squares by their curvature lines. Here we characterize this property
using the cross ratio. Let f be an isothermic surface. Now we consider the cross
ratio of the four points f(u, v), f(u+ ϵ, v), f(u+ ϵ, v + ϵ), f(u, v + ϵ) for some ϵ
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that is sufficiently close to 0. By the Taylor expansion, we have

f(u+ ϵ, v) = f(u, v) +
ϵ

1!
fu(u, v) +

ϵ2

2!
fuu(u, v) +O(ϵ3),

f(u+ ϵ, v + ϵ) = f(u, v) +
ϵ

1!
(fu(u, v) + fv(u, v))

+
ϵ2

2!
(fuu(u, v) + 2fuv(u, v) + fvv(u, v)) +O(ϵ3),

f(u, v + ϵ) = f(u, v) +
ϵ

1!
fv(u, v) +

ϵ2

2!
fvv(u, v) +O(ϵ3).

Using them, we can check that

lim
ϵ→0

cr(f(u, v), f(u+ ϵ, v), f(u+ ϵ, v + ϵ), f(u, v + ϵ)) = −E
G
.

In particular, isothermicity can be characterized as follows:

Theorem 4.9. Let f be a surface parametrized by curvature line coordinates
(u, v). Then f is an isothermic surface if and only if

lim
ϵ→0

cr(f(u, v), f(u+ ϵ, v), f(u+ ϵ, v + ϵ), f(u, v + ϵ)) = −α(u)
β(v)

,

where α(u) and β(v) are positive real-valued functions depending only on u and
v, respectively.

4.5 Application of Christoffel transformations for isothermic
surfaces

In the previous subsection, we briefly discussed Christoffel transformations of
isothermic surfaces. Here we apply Christoffel transformations to isothermic
minimal surfaces in R3. As already mentioned, away from umbilic points, any
minimal surface is isothermic. Furthermore, the following property is known.

Theorem 4.10. Let f be an isothermic surface in R3. Then f is an isothermic
minimal surface if and only if f∗ can be chosen as the Gauss map ν of f .

In this article, we omit the proof of Theorem 4.10. Details can be found in [15]
for example. Using this fact, we derive a Weierstrass representation for isothermic
minimal surfaces in R3. Choose a holomorphic function g = g(z), and take the
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inverse image of the stereographic projection

C ∋ g ↦→ ν :=

(︄
2Re(g)

1 + |g|2 ,
2Im(g)

1 + |g|2 ,
−1 + |g|2
1 + |g|2

)︄t

∈ S2 ⊂ R3.

Since g is holomorphic, ν is also isothermic, and

∥νu∥2 =
4|gu|2

(1 + |g|2)2 =
4|gv|2

(1 + |g|2)2 = ∥νv∥2.

Taking the Christoffel transform of ν, we have

fu =
νu

∥νu∥2
=

1

2
Re

(︄
1 + g2

gu
,

√
−1(1− g2)

gu
,
2g

gu

)︄t

,

fv = − νv
∥νv∥2

= −1

2
Re

(︄
1 + g2

gv
,

√
−1(1− g2)

gv
,
2g

gv

)︄t

.

Finally we can derive a Weierstrass representation for isothermic minimal surfaces:

Theorem 4.11. Any isothermic minimal surface f can be described by

f = Re

⎛⎝∫︂ (︄1 + g2

g′
,

√
−1(1− g2)

g′
,
2g

g′

)︄t

dz

⎞⎠ (z = u+
√
−1v, g′ = gz),

where g is a holomorphic function.

4.6 Darboux transformations of isothermic surfaces

In this subsection we introduce another famous integrable transformation called
the Darboux transformation. Similarly to the case of Bäcklund transformation for
K-surfaces (see Section 3), Darboux [13] discovered a new geometric transforma-
tion for isothermic surfaces, and Bianchi [2] showed that the Bianchi permutability
of Darboux transformations also holds. First we start from the original definition
of Darboux transforms and transformations. Let f be an isothermic surface. Then
f̂ is called the Darboux transform of f if

• there exists a sphere congruence enveloped by the original surface f and
the transform f̂ ,

• the correspondence, given by the sphere congruence, from the original sur-
face to the other enveloping surface, preserves curvature lines, and
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• this correspondence preserves conformality, that is, f and f̂ are conformally
equivalent.

Writing f̂ := Df , we call D the Darboux transformation of f .

After about 100 years passed since Darboux transformations for isothermic
surfaces were defined, a great discovery was given by Hertrich-Jeromin, Pedit
[17] using the quaternionic calculus. This implies that the definition of Darboux
transformations for isothermic surfaces is equivalent to the following property,
that we adopt as the definition of Darboux transformtions for isothermic surfaces:

Definition 4.12 (and Theorem). Let f be an isothermic surface in R ∼= ImH,
and let f∗ be its Christoffel transform. Then f̂

λ
(λ ∈ R \ {0}) is the λ-Darboux

transform of f if f̂
λ

satisfies

df̂ = λ(f̂ − f)df∗(f̂ − f),

and we write f̂
λ
:= Dλf .

In the next subsection, this description enables us to show the Bianchi per-
mutability of Darboux transformations. Here we calculate the Christoffel trans-
form (f̂

λ
)∗ of f̂

λ
. By definition, we have

d(f̂
λ
) = λ(f̂

λ − f)df∗(f̂
λ − f)

⇐⇒ (f̂
λ
)udu+ (f̂

λ
)vdv = λ(f̂

λ − f)

(︃
fu

∥fu∥2
du− fv

∥fv∥2
dv

)︃
(f̂

λ − f).

Thus (f̂
λ
)∗ satisfies

((f̂
λ
)∗)u =

{︃
λ(f̂

λ − f)
fu

∥fu∥2
(f̂

λ − f)

}︃/︄⃦⃦⃦⃦
λ(f̂

λ − f)
fu

∥fu∥2
(f̂

λ − f)

⃦⃦⃦⃦2

= λ−1 (f̂
λ − f)fu(f̂

λ − f)

∥f̂λ − f∥4
= λ−1

i (f̂
λ − f)−1fu(f̂

λ − f)−1.
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Similarly, we have ((f̂
λ
)∗)v = λ−1(f̂

λ − f)−1fv(f̂
λ − f)−1. So we have

d(f̂
λ
)∗ = λ−1(f̂

λ − f)−1df(f̂
λ − f)−1

= λ−1(f̂
λ − f)−1(df̂

λ − df̂
λ
+ df)(f̂

λ − f)−1

= λ−1(f̂
λ − f)−1{df̂λ + (f̂

λ − f) · d(f̂λ − f) · (f̂λ − f)}(f̂λ − f)−1

= λ−1{(f̂λ − f)−1df̂
λ
(f̂

λ − f)−1 + d(f̂
λ − f)−1}

= df∗ + λ−1d(f̂
λ − f)−1.

Setting

(4.2) (f̂
λ
)∗ := f∗ +

1

λ
(f̂

λ − f)−1,

we can check that (f̂
λ
)∗ is the Christoffel transform of f̂

λ
.

4.7 Bianchi permutability of Christoffel and Darboux
transformations

In the previous subsection, we derived the Christoffel transform of the Darboux
transform of an isothermic surface f . From this, we can easily show the following
permutability.

Theorem 4.13. Let f be an isothermic surface in R3, let f∗ be its Christoffel
transform, and let f̂

λ
be the λ-Darboux transform of f . Then there exists a

surface (f̂
λ
)∗ in Equation (4.2) so that it is the Darboux transform of f∗, and

the Christoffel transform of f̂ as well, that is,

(f̂
λ
)∗ = DλCf = CDλf

holds.

The half of this theorem was already proven. In fact, we showed that (f̂
λ
)∗ in

Equation (4.2) is the Christoffel transform of f̂
λ
. The remaining task is to show

that it is the λ-Darboux transform of f∗. By Equation (4.2), we have

d(f̂
λ
)∗ = λ−1(f̂

λ − f)−1df(f̂
λ − f)−1

= λ−1 · λ((f̂λ)∗ − f∗) · d(f∗)∗ · λ((f̂λ)∗ − f∗)

= λ((f̂
λ
)∗ − f∗)d(f∗)∗((f̂

λ
)∗ − f∗),
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proving the theorem. Thus, like the Bianchi permutability of the sine-Gordon
equation, a diagram in Figure 4.1 holds.

Figure 4.1: Bianchi permutability of Christoffel and Darboux transformations for
isothermic surfaces

4.8 Bianchi permutability of Darboux transformations

In this subsection we introduce Bianchi permutability of Darboux transfomations
for isothermic surfaces. The Bianchi permutability for Darboux transformations
states the following:

Theorem 4.14. Let f be an isothermic surface in R3 ∼= ImH, and let f̂ i =

Dif (i = 1, 2) be λi-Darboux transforms of f . Then there exists f̂12 so that it is
the λ2-Darboux transform of f̂1, and λ1-Darboux transform of f̂2 as well, that is,

f̂12 = D2D1f = D1D2f.

holds. Furthermore, f̂12 satisfies

(4.3) cr(f, f̂1, f̂12, f̂2) =
λ2
λ1
.

Proof. First we check that f̂12 given by Equation (4.3) is the λ1-Darboux trans-
form of f̂2 under the assumption that f̂12 is the λ2-Darboux transform of f̂1. We
will check later that this assumption does hold. By definition, we have

df̂12 = λ2(f̂12 − f̂1)df̂
∗
1(f̂12 − f̂1)

=
λ2
λ1

(f̂12 − f̂1)(f̂1 − f)−1df(f̂1 − f)−1(f̂12 − f̂1)
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Figure 4.2: Bianchi permutability of Darboux transformations for isothermic
surfaces

Since cr(f, f̂1, f̂12, f̂2) = λ2/λ2 and f̂1 − f, f̂2 − f ∈ ImH, we have

(f̂1 − f)−1(f̂12 − f̂1) =
λ1
λ2

(f̂2 − f)−1(f̂12 − f̂2).

So we have

df̂12 =
λ2
λ1

{︃
λ2
λ1

(f̂2 − f)(f̂12 − f̂2)
−1

}︃−1

df
λ1
λ2

(f̂2 − f)−1(f̂12 − f̂2)

=
λ1
λ2

(f̂12 − f̂2)(f̂2 − f)−1df(f̂2 − f)−1(f̂12 − f̂2)

= λ1(f̂12 − f̂2)df̂
∗
2(f̂12 − f̂2).

Thus f̂
∗
12 is the λ1-Darboux transform of f̂2. The remaining task is to show that

f̂
∗
12 is the λ2-Darboux transform of f̂1. Choosing f̂12 so that cr(f, f̂1, f̂12, f̂2) =
λ2/λ1, that is,

f̂12 =
{︂
λ2f̂1(f̂1 − f)−1 − λ1f̂2(f̂2 − f)−1

}︂{︂
λ2(f̂1 − f)−1 − λ1(f̂2 − f)−1

}︂−1

= (λ2 − λ1)
{︂
λ2(f̂1 − f)−1 − λ1(f̂2 − f)−1

}︂−1

+ f.

By the above equation,

df̂12 = (λ2 − λ1)

[︃
d
{︂
λ2(f̂1 − f)−1 − λ1(f̂2 − f)−1

}︂−1
]︃
+ df

= −(λ2 − λ1)c1d
{︂
λ2(f̂1 − f)−1 − λ1(f̂2 − f)−1

}︂
c1 + df,
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= − (λ2 − λ1)c1

{︂
λ2(f̂1 − f)−1df(f̂1 − f)−1

− λ1(f̂2 − f)−1df(f̂2 − f)−1
}︂
c1 + df,

where

c1 =
{︂
λ2(f̂1 − f)−1 − λ1(f̂2 − f)−1

}︂−1

= (λ2 − λ1)
−1(f̂12 − f).

The computation is straightforward but tedious. So we do not write explicit
computations here. Deforming these equations, finally we can check that f̂

∗
12 is

the λ2-Darboux transform of f̂1, that is,

df̂12 = λ2(f̂12 − f̂1)df̂
∗
1(f̂12 − f̂1),

proving the theorem.

Similarly, like in the case of Bäcklund transformations for the sine-Gordon
equation, iterating the Bianchi permutability, we can show the following theorem.

Theorem 4.15. Let f be an isothermic surface, and let f̂ i := Dλif (i = 1, 2, 3)

be λi-Darboux transforms of f . Then there exists the point f̂123 so that

f̂123 = Dλ1
Dλ2

Dλ3
f = Dλ2

Dλ1
Dλ3

f = Dλ3
Dλ1

Dλ2
f ,

that is, for any permutation σ : {1, 2, 3} → {1, 2, 3},

Dλ1
Dλ2

Dλ3
= Dλσ(1)

Dλσ(2)
Dλσ(3)

holds (see Figure 4.3).

Finally, we state a discrete geoemtric structure arising from the Bianchi per-
mutability of Darboux transformations for isothermic surfaces. Let f be an
isothermic surface, and let f̂ i (i = 1, 2) be λi-Darboux transforms of f . By
Theorem 4.14, there exists f̂12 = D1D2f = D2D1f so that it satisfies Equation
(4.3). This implies that four points f, f̂1, f̂12, f̂2 are concircular. Thus we know
that the Bianchi permutability, an discrete integrable structure, is given by the
cross ratio, and it arises a discrete geometric structure2. Furthermore, as already
mentioned in Subsections 4.1, 4.4, isothermicity is Möbius invariant, and it is
characterized by the infinitesimal cross ratio (i.e. the limit of the cross ratio).

2In this case the discrete geometric structure is the concircularity of four points.
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Figure 4.3: Bianchi cube of Darboux transformations for isothermic surfaces

Focusing on these points, Bobenko, Pinkall [4] described a theory of discrete
isothermic surfaces preserving the discrete integrable structure (i.e. cross ratio).
Soon after, Hertrich-Jeromin, Hoffmann, Pinkall [16] introduced a discrete version
of Darboux transforms of isothermic surfaces. The discrete theory preserves the
discrete integrabilities introduced in Subsections 4.7, 4.8, and produces higher
dimensional discrete symmetries. Such a higher dimensional discrete symmetry
is now called the “multidimensional consistency” in the book [6].

More generally, as already mentioned before, due to Möbius invariance of
isothermicity, it is natural to consider isothermic surfaces in conformal geometry.
In fact, [10], [15], and so on, described discrete isothermic surfaces in Möbius
geometry, including discrete isothermic surfaces in 3-dimensional spherical and
hyperbolic spaces. Furthermore, a new machinery using the one-parameter family
of flat connections was invented to discuss discrete isothermic surfaces or more
general discrete surfaces in more general spaces. Using the notion of the flat
connections, the aforementioned proofs of the Bianchi permutabilities and per-
mutabilities of more general transformations are simplified and unified. If the
readers are interested in this direction, the author would like to recommend to
read further references, for example, [8], [10], [12],[15].
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Chapter 2

Discrete isothermicity in Möbius
subgeometries

Joseph Cho, Wayne Rossman
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Abstract

We give an elementary description of Möbius geometry using a Minkowski
space model, primarily in low dimensions with comments about generalizing
to higher dimensions. We then give an application to the discretization of
isothermic surfaces in three dimensional spaceforms.

1 Introduction

In this article, we give an elementary description of how an understanding of
Möbius transformations, which are maps between n-dimensional spaceforms pre-
serving the collection of spheres of all dimensions less than n, is assisted by use
of Minkowski spaces.

The arguments are essentially the same regardless of dimension of the space-
forms and the subsuming Minkowski spaces, and in fact the story can extend
beyond Minkowski spaces, as we touch upon when we introduce Rp,q spaces. So
we do not wish to hide the uniformity of arguments across all dimensions, and
in fact we wish to highlight that as we move from 2-dimensional spaceforms to
3-dimensional ones.

S.-D. Yang (ed.), An introduction to discrete differential geometry.

Anam Lecture Notes in Mathematics Volume 2



2. MÖBIUS GEOMETRY OF CIRCLES

However, there are some advantages to initially restricting to 2-dimensional
and 3-dimensional spaceforms for new entrants to this topic. Two obvious rea-
sons are that those low dimensional spaces are more familiar to many than the
higher dimensional counterparts, and the vectors and matrices involved are not
so complicated even when written in dirty detail in terms of choices of coordinate
systems. A third less immediate reason is that the case of 2-dimensional space-
forms can take advantage of the fact that 2-dimensional Euclidean space can be
identified with the set of complex numbers, resulting in a very elementary way
of describing Möbius transformations that does not exist in higher dimensions -
fractional linear transformations, which almost every undergraduate student of
mathematics has been exposed to.

This theory has applications to a number of subjects within differential geom-
etry, and, as one example, we touch upon isothermic surfaces. We use the theory
here to show how one can naturally discretize that notion of isothermic surfaces.

Finally, we end with selected recommendations for further reading in this field.

2 Möbius geometry of circles

In this section, we review the notion of Möbius geometry of circles using the
Minkowski model, and see how the Euclidean plane, the 2-sphere, and the hyper-
bolic plane are subgeometries of Möbius geometry.

2.1 Ambient spaces

We first review the ambient spaces appearing in this section. In fact, we view
the 2-sphere and the hyperbolic plane as existing inside Euclidean 3-space and
Minkowski 3-space, respectively; therefore, we first describe those spaces.

2.1.1 Euclidean 2-plane

Let R2 denote the usual 2-dimensional Euclidean plane, that is,

R2 = {(x1, x2)t : x1, x2 ∈ R}

with metric gR2

gR2 = dx21 + dx22.
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2. MÖBIUS GEOMETRY OF CIRCLES

Therefore, the inner product ⟨·, ·⟩2 is given by

⟨x, y⟩2 = x1y1 + x2y2

for any x = (x1, x2)
t, y = (y1, y2)

t ∈ R2.

The set of isometries of R2 is a group under the composition operation, gen-
erated by

(1) translations,

(2) reflections across lines containing the origin, and

(3) rotations fixing the origin.

Here, translations are maps

(x1, x2)
t ↦→ (x1, x2)

t + (t1, t2)
t,

for some t1, t2 ∈ R, while rotations and reflections can be described via(︄
x1
x2

)︄
↦→
(︄

cos θ sin θ

∓ sin θ ± cos θ

)︄(︄
x1
x2

)︄
for some θ ∈ R. Note that for all θ ∈ R, the matrices

(2.1)

(︄
cos θ sin θ

∓ sin θ ± cos θ

)︄
∈ O(2)

for
O(2) = {A ∈M2×2 : AtA = I2},

where Mn×n denotes the set of all n × n matrices, and In denotes the n × n

identity matrix.

Exercise 2.1. Verify that every matrix A ∈ O(2) is of the form given in (2.1).

2.1.2 Euclidean 3-space

Similar to the Euclidean plane, let R3 denote the Euclidean 3-space, in other
words,

R3 = {(x1, x2, x3)t : x1, x2, x3 ∈ R}
with metric gR3

gR3 = dx21 + dx22 + dx23.
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2. MÖBIUS GEOMETRY OF CIRCLES

The corresponding inner product ⟨·, ·⟩3 is now given by

⟨x, y⟩3 = x1y1 + x2y2 + x3y3

for any x = (x1, x2, x3)
t, y = (y1, y2, y3)

t ∈ R3.

The set of isometries of R3 is again a group under the composition operation,
generated by

(1) translations,

(2) reflections across planes containing the origin, and

(3) rotations fixing the origin.

Here, the reflections and rotations are described via⎛⎜⎝x1x2
x3

⎞⎟⎠ ↦→ A

⎛⎜⎝x1x2
x3

⎞⎟⎠
where A ∈ O(3) = {A ∈M3×3 : AtA = I3}.

Exercise 2.2. Show that the following matrices are in O(3).

•

⎛⎜⎝1 0 0

0 cos θ sin θ

0 ∓ sin θ ± cos θ

⎞⎟⎠

•

⎛⎜⎝ cos θ 0 sin θ

0 1 0

∓ sin θ 0 ± cos θ

⎞⎟⎠

•

⎛⎜⎝ cos θ sin θ 0

∓ sin θ ± cos θ 0

0 0 1

⎞⎟⎠
Exercise 2.3. Let x, y ∈ R3 and A ∈ O(3). Using the fact that ⟨x, y⟩3 = xty,
show that ⟨Ax,Ay⟩3 = ⟨x, y⟩3.

2.1.3 Minkowski 3-space

Now let R2,1 denote the Minkowski 3-space of signature (−++), that is,

R2,1 = {(x0, x1, x2)t : x0, x1, x2 ∈ R}
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2. MÖBIUS GEOMETRY OF CIRCLES

with non-Euclidean metric gR3

gR2,1 = −dx20 + dx21 + dx22.

Therefore, the corresponding (indefinite) inner product ⟨·, ·⟩2,1 is now given by

⟨x, y⟩2,1 = −x0y0 + x1y1 + x2y2

for any x = (x0, x1, x2)
t, y = (y0, y1, y2)

t ∈ R2,1. The definition of inner product
leads to the causality of a given vector: a non-zero vector x ∈ R2,1 is called

• spacelike, if ⟨x, x⟩ > 0,

• lightlike, if ⟨x, x⟩ = 0, and

• timelike, if ⟨x, x⟩ < 0.

The isometries of R2,1 that fix the origin can be described as⎛⎜⎝x1x2
x3

⎞⎟⎠ ↦→ A

⎛⎜⎝x1x2
x3

⎞⎟⎠
for

A ∈ O(2, 1) = {A ∈M3×3 : AtI2,1A = I2,1}

where

I2,1 =

⎛⎜⎝−1 0 0

0 1 0

0 0 1

⎞⎟⎠ .

Note that the signatures of the diagonal terms of I2,1 correspond to the signatures
of the metric g2,1.

Exercise 2.4. Show that the following matrices are in O(2, 1).

•

⎛⎜⎝coshφ 0 sinhφ

0 1 0

sinhφ 0 coshφ

⎞⎟⎠

•

⎛⎜⎝coshφ sinhφ 0

sinhφ coshφ 0

0 0 1

⎞⎟⎠
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Exercise 2.5. For A ∈ O(2, 1) such that

A =

⎛⎜⎝ 1 0 0

0

0
B

⎞⎟⎠ ,

show that B ∈ O(2).

2.1.4 General description of Euclidean spaces and Minkowski spaces

The descriptions of the above spaces are similar, and we can in fact describe these
spaces uniformly as follows. Let Rp,q denote a space with p+ q dimension:

Rp,q = {(x1, . . . , xq, xq+1, . . . , xq+p)
t : xi ∈ R}

with (non-Euclidean) metric

gp,q = −

⎛⎝ q∑︂
i=1

dx2i

⎞⎠+

q+p∑︂
i=q+1

dx2i .

Then, the corresponding (indefinite) inner product ⟨·, ·⟩p,q is now given by

⟨x, y⟩p,q = −

⎛⎝ q∑︂
i=1

xiyi

⎞⎠+

q+p∑︂
i=q+1

xiyi.

for any x = (x1, . . . , xp+q)
t, y = (y1, . . . , yp+q)

t ∈ Rp,q.

The isometries of Rp,q that fix the origin can be described as⎛⎜⎜⎜⎜⎝
x1

...
xq

xq+1

...
xq+p

⎞⎟⎟⎟⎟⎠ ↦→ A

⎛⎜⎜⎜⎜⎝
x1

...
xq

xq+1

...
xq+p

⎞⎟⎟⎟⎟⎠
for

A ∈ O(p, q) = {A ∈M(p+q)×(p+q) : A
tIp,qA = Ip,q}
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2. MÖBIUS GEOMETRY OF CIRCLES

where Ip,q is the diagonal matrix of the form

−1

. . .
−1

1

. . .
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
q

q

p

p

.

Note that the signatures of the diagonal terms again correspond to the signatures
of the metric gp,q.

We say that such Rp,q is a ((p + q)-dimensional) pseudo-Euclidean space of
signature (p, q). In particular, if p = n and q = 0, we call Rn the Euclidean
n-space; if p = n− 1 and q = 1, we call Rn−1,1 the Minkowski n-space.

Now that the notions of Euclidean spaces and Minkowski spaces are defined,
we may introduce spaces with non-vanishing constant (sectional) curvature.

2.1.5 2-sphere

Let the 2-sphere S2 be defined as

S2 := {x ∈ R3 : ⟨x, x⟩3 = 1},

where its metric gS2 is defined by restricting the metric of the ambient space R3

to the 2-dimensional tangent spaces of S2. One of the ways to understand the
metric endowed on the 2-sphere is to use the stereographic projection.

In these notes, we use the stereographic projection from the north pole (0, 0, 1)t,
denoted by σ : S2 \ {(0, 0, 1)t} → {(x1, x2, 0)t ∈ R3} ∼= R2, where

σ((x1, x2, x3)
t) =

1

1− x3
(x1, x2)

t
.

Geometrically, σ(p) is determined by finding the intersection between the x1x2-
plane and the line through the north pole and the point p. Stereographic projec-
tion is a bijection, with its inverse σ−1 defined as

(2.2) σ−1((x1, x2)
t) =

1

1 + x21 + x22
(2x1, 2x2, x

2
1 + x22 − 1)t.
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2. MÖBIUS GEOMETRY OF CIRCLES

Viewing σ−1 as a coordinate patch for S2, we can now compute the metric
gS2 as follows: calculating that

∂1σ
−1 =

∂

∂x1
σ−1 =

1

(1 + x21 + x22)
2

(︂
−2x21 + 2x22 + 2,−4x1x2, 4x1

)︂
∂2σ

−1 =
∂

∂x2
σ−1 =

1

(1 + x21 + x22)
2

(︂
−4x1x2, 2x

2
1 − 2x22 + 2, 4x2

)︂
,

we have that

gS2 = ⟨∂1σ−1, ∂1σ
−1⟩3 dx21 + 2⟨∂1σ−1, ∂2σ

−1⟩3 dx1 dx2
+ ⟨∂2σ−1, ∂2σ

−1⟩3 dx22
=

4

(1 + x21 + x22)
2
(dx21 + dx22).

The isometries of S2 are the reflections and rotations of R3 fixing the origin.
Thus the isometry group of S2 is represented by O(3).

Circles of S2 are “planar slices” of S2, which we formulate as follows: recall
that any point (x1, x2, x3)

t in a plane in R3 can be described via the equation

(2.3) m1x1 +m2x2 +m3x3 = q

for some m1,m2,m3, q ∈ R. Rewriting the above equation, we have

⟨x,m⟩3 = q

for m = (m1,m2,m3)
t and x = (x1, x2, x3)

t. Therefore, we may consider circles
in the 2-sphere as

C̃S2 [m, q] := {x ∈ S2 ⊂ R3 : ⟨x,m⟩3 = q},

provided that the set is non-empty, a condition we can characterize as follows.

Lemma 2.6. C̃S2 [m, q] is non-empty (and includes more than one point) if and
only if ⟨m,m⟩3 > q2.

Proof. Let a plane P be defined from (2.3) via some m ∈ R3 and q ∈ R. P and
S2 intersect transversally if and only if the squared distance between P and the
origin is less than 1, i.e.

q2

⟨m,m⟩3
< 1,

giving us the desired conclusion.
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2. MÖBIUS GEOMETRY OF CIRCLES

2.1.6 Hyperbolic 2-plane

Denoting the hyperbolic 2-plane as H2, we first introduce the Minkowski model
of the hyperbolic plane. For the Minkowski 3-space R2,1, let H2 be defined via

H2 := {x = (x0, x1, x2)
t ∈ R2,1 : ⟨x, x⟩2,1 = −1, x0 > 0},

the upper sheet of the two-sheeted hyperboloid in Minkowski 3-space. Similar
to the 2-sphere case, the metric gH2 is defined by restricting the metric of the
ambient space R2,1 to the 2-dimensional tangent spaces of H2, which we will
calculate using the Poincaré disk model.

From the Minkowski model, define a stereographic projection into the Poincaré
disk model via

τ((x0, x1, x2)
t) =

1

1 + x0
(x1, x2).

One immediately sees that since for any x = (x0, x1, x2)
t, we have x21+x22 = x20−1,⟨︃

1

1 + x0
(x1, x2),

1

1 + x0
(x1, x2)

⟩︃
2

=
1

(1 + x0)2
(x21 + x22) <

x20 − 1

x20 + 1
< 1;

hence we can see the Poincaré disk model as the unit disk in the Euclidean plane.
We call the unit circle in the Poincaré disk model, the ideal boundary.

Viewing

(2.4) τ−1((x1, x2)
t) =

1

1− x21 − x22
(1 + x21 + x22, 2x1, 2x2)

t

as a coordinate patch for H3, we can compute the metric gH2 similarly to the case
of the 2-sphere, and obtain that

gH2 = ⟨∂1τ−1, ∂1τ
−1⟩2,1 dx21 + 2⟨∂1τ−1, ∂2τ

−1⟩2,1 dx1 dx2
+ ⟨∂2τ−1, ∂2τ

−1⟩2,1 dx22
=

4

(1− x21 − x22)
2
(dx21 + dx22).

Again, the isometries of H2 are the reflections and rotations of R2,1 fixing the
origin, telling us that the isometry group of H2 is represented by O(2, 1).

Exercise 2.7. Show that each isometry group for R2, S2 and H2 is 3-dimensional.
(Hint: for the R3 case, count the dimensions for translations and isometries fixing
the origin separately.)
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Circles in H2 are given similarly to those in S2, as “planar slices”: given a
vector m = (m0,m1,m2)

t ∈ R2,1 and q ∈ R, we let

C̃H2 [m, q] := {x ∈ H2 : ⟨x,m⟩2,1 = q}

be a circle. Circles in H2 come in three different types, which can be characterized
via m as follows:

• Bounded circles arise when ⟨m,m⟩2,1 < 0. These appear as genuine circles
within the Poincaré disk model.

• Horocircles appear when ⟨m,m⟩2,1 = 0. These appear as circles tangent to
the ideal boundary in the Poincaré disk model.

• Unbounded circles arise when ⟨m,m⟩2,1 > 0, and appear as arcs of circles
that intersect the ideal boundary transversally in the Poincaré disk model.

Exercise 2.8. Show that C̃H2 [m, q] is non-empty (and includes more than one
point) if and only if ⟨m,m⟩2,1 + q2 > 0. (Hint: for the case of bounded circles,
use an argument similar to that used for the proof of Lemma 2.6.)

2.2 Minkowski model of Möbius geometry

Let R3,1 be a Minkowski 4-space with signature (−+++) as in Section 2.1.4, i.e.
the space is equipped with inner product

⟨X,Y ⟩3,1 = −x0y0 + x1y1 + x2y2 + x3y3

for some X = (x0, x1, x2, x3)
t, Y = (y0, y1, y2, y3)

t ∈ R3,1. The 3-dimensional
lightcone L3 is

L3 = {X ∈ R3,1 : ⟨X,X⟩3,1 = 0}.

To make 2-dimensional spaceforms, choose qκ ∈ R3,1 with ⟨qκ, qκ⟩3,1 = −κ,
and define

M2
κ = {X ∈ L3 : ⟨X, qκ⟩3,1 = −1}.

Here, we call qκ the spaceform vector. By applying a suitable transformation in
O(3, 1), we may assume without loss of generality that

(2.5) qκ =
(︁
1
2 (κ+ 1), 12 (κ− 1), 0, 0

)︁t
.

Denoting R2
κ =

(︁
R2 ∪ {∞}

)︁
\
{︁
x : ⟨x, x⟩2 = − 1

κ

}︁
, we have the following lemma.

46



2. MÖBIUS GEOMETRY OF CIRCLES

Lemma 2.9. The map ψκ : R2
κ →M2

κ defined by

(2.6) ψκ(x) =
1

1 + κ⟨x, x⟩2

⎛⎜⎝1 + ⟨x, x⟩2
1− ⟨x, x⟩2

2x

⎞⎟⎠
is a bijection for any choice of κ.

Exercise 2.10. Prove Lemma 2.9 by showing that ϕκ = ψ−1
κ if ϕκ : M2

κ → R2
κ

is defined as

(2.7) ϕκ(Y ) = ϕκ((y0, y1, y2, y3)
t) =

1

y0 + y1
(y2, y3).

To find the metric endowed on M2
κ , as done for the 2-sphere and the hyperbolic

2-plane cases, we view ψ as a coordinate patch for M2
κ and compute the metric:

By calculation, we find that for x = (x1, x2)
t,

(2.8)
∂1ψκ = − 2

(1+κ⟨x,x⟩2)2

(︂
(κ− 1)x1, (κ+ 1)x1, κx

2
1 − κx22 − 1, 2κx1x2

)︂
∂2ψκ = − 2

(1+κ⟨x,x⟩2)2

(︂
(κ− 1)x2, (κ+ 1)x2, 2κx1x2, κx

2
1 − κx22 + 1

)︂
.

Therefore, we see that

(2.9)

gM2
κ
= ⟨∂1ψκ, ∂1ψκ⟩3,1 dx21 + 2⟨∂1ψκ, ∂1ψκ⟩3,1 dx1 dx2

+ ⟨∂1ψκ, ∂1ψκ⟩3,1 dx22
=

4

(1 + κ(x21 + x22))
2
(dx21 + dx22).

The form of the metric gM2
κ

suggests that we have the following important theorem,
confirmed in many standard textbooks in differential geometry:

Theorem 2.11. M2
κ has constant (sectional) curvature κ.

2.3 2-dimensional spaceforms as Möbius subgeometries

We now explain how we can view the 2-dimensional spaceforms as subgeometries
of Möbius geometry.

First, take the 2-sphere S2. Since for any (x1, x2, x3) ∈ S2 ⊂ R3, we have that

x21 + x22 + x23 = 1,
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we see that

0 = −1 + x21 + x22 + x23 = ⟨(1, x1, x2, x3)t, (1, x1, x2, x3)t⟩3,1.

Therefore,
(1, x1, x2, x3)

t ∈ L3

for any (x1, x2, x3)
t ∈ S2. Furthermore, for q1 = (1, 0, 0, 0)t,

⟨(1, x1, x2, x3)t, q1⟩3,1 = −1,

telling us that
(1, x1, x2, x3)

t ∈M2
1 .

A simple reversal of the argument gives us a natural bijection between S2 and
M2

1 .

Exercise 2.12. Further convince yourself of this correspondence between S2 and
M2

1 by calculating ψ1, where ψκ is as in (2.6), and comparing this with σ−1 as
in (2.2).

Similarly, for any point (x0, x1, x2)
t ∈ H2 ⊂ R2,1 in the hyperbolic 2-plane,

−x20 + x21 + x22 = −1.

Hence,

0 = −x20 + 1 + x21 + x22 = ⟨(x0, 1, x1, x2)t, (x0, 1, x1, x2)t⟩3,1,

telling us that
(x0, 1, x1, x2) ∈ L3

for any (x0, x1, x2)
t ∈ H2. Then it is easy to check that

(x0, 1, x1, x2) ∈M2
−1,

since
⟨(x0, 1, x1, x2), q−1⟩3,1 = ⟨(x0, 1, x1, x2), (0,−1, 0, 0)⟩3,1 = −1.

Therefore, we again have a natural bijection between H2 and M2
−1.

Exercise 2.13. Further convince yourself of the correspondence between H2 and
M2

−1 by calculating ψ−1, where ψκ is as in (2.6), and comparing this with τ−1 as
in (2.4).
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Lifting the Euclidean 2-plane R2 into the lightcone L3 requires a bit more
thought: in addition to

q0 =
(︁
1
2 ,− 1

2 , 0, 0
)︁t
,

we define o := (1, 1, 0, 0)t ∈ R3,1 so that

q0, o ∈ L3 and ⟨q0, o⟩3,1 = −1.

Now, for any x = (x1, x2)
t ∈ R2, view x = (0, 0, x1, x2) ∈ R3,1, and define

X := 2x+ o+
1

2
⟨2x, 2x⟩3,1q0.

It is a straightforward calculation to see that

X =

⎛⎜⎜⎜⎜⎝
0

0

2x1
2x2

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
1

1

0

0

⎞⎟⎟⎟⎟⎠+
1

2
⟨2x, 2x⟩2

⎛⎜⎜⎜⎜⎝
1
2

− 1
2

0

0

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1 + ⟨x, x⟩2
1− ⟨x, x⟩2

2x1
2x2

⎞⎟⎟⎟⎟⎠ = ϕ0(x).

Remark 2.14. Note that M2
0 obtained via (2.6) has metric 4 times the usual

metric of R2 via (2.9). This is so that when κ ̸= 0, we have the usual expression
of the metric of spaceforms with nonzero sectional curvature. To remedy this for
the R2 case, we may do as follows: Instead of normalizing qκ as in (2.5), we let

q = (1,−1, 0, 0)
t
,

and for M = {X ∈ L3 : ⟨X, q⟩ = −1}, we can calculate that

M =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
1
2 (1 + ⟨x, x⟩2)
1
2 (1 + ⟨x, x⟩2)

x1
x2

⎞⎟⎟⎟⎟⎠ : x =

(︄
x1
x2

)︄
∈ R2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Therefore, choosing o = 1
2 (1, 1, 0, 0, 0)

t so that

(2.10) q, o ∈ L3 and ⟨q0, o⟩3,1 = −1,

we find that ψ : R2 →M defined via

(2.11) ψ(x) = x+ o+
1

2
⟨x, x⟩3,1q
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where we view x = (0, 0, x1, x2) ∈ R3,1, gives us a bijection between R2 and M .
Using ψ as a coordinate patch for M , one can check that

gM = dx21 + dx22.

In fact, one does not need to choose o and q as given: Choosing any o and q

so that (2.10) holds, we see that

span{o, q} ∼= R1,1

implying that
span{o, q}⊥ ∼= R2

with ψ as defined in (2.11) giving us a bijection between span{o, q}⊥ ∼= R2 and
M .

2.4 Conformal 2-sphere

We wish to see that the 2-dimensional spaceforms we are interested in can be
identified as the conformal 2-sphere. Recall that ψκ : R2

κ → M2
κ was defined in

(2.6) as

ψκ(x) =
1

1 + κ⟨x, x⟩2

⎛⎜⎝1 + ⟨x, x⟩2
1− ⟨x, x⟩2

2x

⎞⎟⎠ .

Also, we note that the metric calculated for M2
κ in (2.9) for different values of κ

were all conformally equivalent. Seeing that any point (x1, x2) ∈ R2
κ is mapped

onto a lightlike line

span{(1 + ⟨x, x⟩2, 1− ⟨x, x⟩2, 2x1, 2x2)t}

via ψκ for all values of κ, we can consider the (2-dimensional) projective lightcone
P(L3), defined as

P(L3) = {span{X} : X ∈ L3},

as a model for unifying all the 2-dimensional spaceforms with constant sectional
curvatures, since each line in P(L3) determines at most one point in any given 2-
dimensional spaceform, determined by the choice of κ. We call this the conformal
2-sphere.
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2.5 Circles in the conformal 2-sphere

Recall that circles in S2 were defined as

C̃S2 [m, q] = {x ∈ S2 : ⟨x,m⟩3 = q},

where we have ⟨m,m⟩3 > q2 from Lemma 2.6. If we consider

C := (q,m1,m2,m3)
t ∈ R3,1,

then x = (x1, x2, x3)
t ∈ C̃S2 [m, q] if and only if

⟨(1, x1, x2, x3), S⟩3,1 = 0,

where C is spacelike, since ⟨C,C⟩3,1 = ⟨m,m⟩3 − q2 > 0.

Motivated by this we define circles C̃ in Mobius geometry for some κ using a
spacelike vector C ∈ R3,1 as

(2.12) C̃ := {X ∈M2
κ : ⟨X,C⟩3,1 = 0}.

The scaling of C does not matter, and we will always assume that ⟨C,C⟩3,1 = 1.

We have already seen that such a definition is coherent with circles in S2;
therefore, since stereographic projection preserves circles, we can deduce the
above definition gives the “correct circles” in any 2-dimensional spaceform M2

κ .
In the next example, we calculate this directly for M2

0
∼= R2.

Example 2.15. For some spacelike unit vector C = (c0, c1, c2, c3)
t ∈ R3,1, let

X ∈ C̃, for κ = 0. Since X ∈M2
0 , we write

X = (1 + ⟨x, x⟩2, 1− ⟨x, x⟩2, 2x1, 2x2)t

for some x = (x1, x2)
t. Then ⟨X,C⟩3,1 = 0 tells us that for c = (c2, c3)

t,

0 = −c0(1 + ⟨x, x⟩2) + c1(1− ⟨x, x⟩2) + 2⟨x, c⟩2
= −c0 − c0⟨x, x⟩2 + c1 − c1⟨x, x⟩2 + 2⟨x, c⟩2
= 2⟨x, c⟩2 − (c0 + c1)⟨x, x⟩2 − c0 + c1.
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If c0 + c1 = 0, then the above equation tells us that C̃ projects to a line. Now,
assuming c0 + c1 ̸= 0, we have that⟨︃

x− c

c0 + c1
, x− c

c0 + c1

⟩︃
2

= ⟨x, x⟩2 − 2
⟨x, c⟩2
c0 + c1

+
⟨c, c⟩2

(c0 + c1)2

=
1

c0 + c1

(︃
(c0 + c1)⟨x, x⟩2 − 2⟨x, c⟩2 +

⟨c, c⟩2
c0 + c1

)︃
=

1

c0 + c1

(︃
−c0 + c1 +

⟨c, c⟩2
c0 + c1

)︃
=

−c20 + c21 + ⟨c, c⟩2
(c0 + c1)2

=
1

(c0 + c1)2
,

telling us that C̃ projects to a circle in R2.

Exercise 2.16. Use Exercise 2.8 to show that the circles defined in (2.12) give
the correct circles as described in Section 2.1.6. (Hint: set C = (m0, q,m1,m2).)

Therefore, in Möbius geometry, the set of circles becomes the set of all unit
spacelike vectors, also known as de Sitter 3-space S3,1, that is,

S3,1 := {C ∈ R3,1 : ⟨C,C⟩3,1 = 1}.

2.6 Möbius transformations

Identifying R2 ∼= C, via R2 ∋ (x1, x2)
t ∼ x1 +

√
−1x2 ∈ C, we recall that

all Möbius transformations of the complex plane are given by linear fractional
transformations, that is,

z ↦→ az + b

cz + d
,

for some a, b, c, d ∈ C such that ad− bc ̸= 0. In this section, we first investigate
how these transformations are given in the Möbius geometry as O(3, 1) matrices,
and convince ourselves that the group of Möbius transformations is O(3, 1) in the
Minkowski model.

To see this, using the following five functions

f1(z) = z +
d

c
, f2(z) = z̄, f3(z) =

1

z̄
,

f4(z) =
bc− ad

c2
z, f5(z) = z +

a

c
,
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where z̄ denotes the usual complex conjugation, we first break down the linear
fractional transformation as

(2.13) f5 ◦ f4 ◦ f3 ◦ f2 ◦ f1(z) =
az + b

cz + d
.

Exercise 2.17. Verify (2.13).

Therefore, a Möbius transformation of the complex plane can be given as
a composition of homothety, rotation, translation, conjugation, and inversion.
We now show that these operations can be described as O(3, 1) acting on the
projective lightcone P(L3) as follows: First, using the identification C ∼= R2 ∼=M2

0 ,
we lift a point z = x1 +

√
−1x2 ∼ (x1, x2)

t = x to the null line

L = span{(1 + ⟨x, x⟩2, 1− ⟨x, x⟩2, 2xt)t} ∈ P(L3).

Then, for some A ∈ O(3, 1), we have that AL ∈ P(L3), which we can project back
into R2 ∼= C using the condition that a vector in the null line AL must make
inner product −1 with q0.

• To describe conjugation in Möbius geometry, let

A1 =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎠ ∈ O(3, 1).

Then
A1L = span{(1 + ⟨x, x⟩2, 1− ⟨x, x⟩2, 2x1,−2x2)

t}.
To find the vector in A1L that is in M2

0 , we solve

⟨t(1 + ⟨x, x⟩2, 1− ⟨x, x⟩2, 2x1,−2x2)
t, q0⟩3,1 = −1

for t, which tells us that t = 1. Projecting this vector back using ϕκ defined
in (2.7), we obtain

ϕκ((1 + ⟨x, x⟩2, 1− ⟨x, x⟩2, 2x1,−2x2)
t) = (x1,−x2).

Hence A1 corresponds to the map

z ∼ (x1, x2)
t ↦→ (x1,−x2)t ∼ z̄,

which is a conjugation.
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• For homothety, we let

A2 =

⎛⎜⎜⎜⎜⎝
cosh(log(r)) − sinh(log(r)) 0 0

− sinh(log(r)) cosh(log(r)) 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ ∈ O(3, 1)

for some r ∈ R, giving us

A2L =

(︃
1

r
+ r⟨x, x⟩2,

1

r
− r⟨x, x⟩2, 2xt

)︃t

.

Again, to find the correct scaling, we solve⟨︄
t

(︃
1

r
+ r⟨x, x⟩2,

1

r
− r⟨x, x⟩2, 2xt

)︃t

, q0

⟩︄
3,1

= −1

for t, and we have that t = r. Projecting this vector via ϕκ then tells us
that A2 corresponds to the map

z ∼ (x1, x2)
t ↦→ (rx1, rx2)

t ∼ rz,

for r ∈ R, a homothety.

• In a similar way, we can show that

A3 =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

⎞⎟⎟⎟⎟⎠ ∈ O(3, 1).

corresponds to a map

z ∼ (x1, x2)
t ↦→ (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ)

t ∼ e
√
−1θz,

a rotation. We leave showing this correspondence as an exercise.

• Also, we have that

A4 =

⎛⎜⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ ∈ O(3, 1)

54



3. MÖBIUS GEOMETRY OF SPHERES

corresponds to a map

z ∼ (x1, x2)
t ↦→ 1

x21 + x22
(x1, x2)

t ∼ 1

z̄
,

an inversion. We leave the verification of this correspondence as an exercise.

• Finally, for

A5 =

⎛⎜⎜⎜⎜⎝
1 + 1

2 ⟨y, y⟩2 1
2 ⟨y, y⟩2 y1 y2

− 1
2 ⟨y, y⟩2 1− 1

2 ⟨y, y⟩2 −y1 −y2
y1 y1 1 0

y2 y2 0 1

⎞⎟⎟⎟⎟⎠ ∈ O(3, 1),

where y = (y1, y2)
t, we have that A5 corresponds to the map

z ∼ (x1, x2)
t ↦→ (x1 + y1, x2 + y2)

t ∼ z + z0

for z0 = y1 +
√
−1y2, a translation. We also leave the checking of this

correspondence as an exercise.

Exercise 2.18. Show that the matrices A3, A4, and A5 correspond to a rotation,
an inversion, and a translation, respectively.

The fact that the group of Möbius transformations are now described as
O(3, 1) acting on P(L3) is one of the advantages of using the Minkowski model
to unify the different 2-dimensional spaceforms as a conformal 2-sphere. An easy
consequence of representing Möbius transformations as O(3, 1) comes from the
previous observation that the space of spheres are represented by de Sitter 3-space
S3,1:

Theorem 2.19. Möbius transformations preserve circles.

3 Möbius geometry of spheres

We now add a dimension and consider the Möbius geometry of spheres. The
basics of Möbius geometry of spheres can be described analogously to that of
circles as we only need to add a dimension to most of the arguments. Therefore,
we leave most of the proofs in this section as an exercise. (For hints, we ask the
readers to refer to the analogous proofs in the section regarding Möbius geometry
of circles.)
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3.1 3-sphere and hyperbolic 3-space

We first introduce two 3-dimensional spaceforms with nonzero constant sectional
curvature.

3.1.1 3-sphere

Let R4 denote the Euclidean 4-space with inner product ⟨·, ·⟩4. The 3-sphere S3

is defined as

S3 = {x ∈ R4 : ⟨x, x⟩4 = 1}.

To calculate the metric, we use the stereographic projection from the north pole
(0, 0, 0, 1)t, denoted by

σ : S2 \ {(0, 0, 0, 1)t} → {(x1, x2, x3, 0)t ∈ R4} ∼= R3,

where

σ((x1, x2, x3, x4)
t) =

1

1− x4
(x1, x2, x3)

t
.

Stereographic projection is a bijection, with its inverse σ−1 defined as

σ−1((x1, x2, x3)
t) = 1

1+x2
1+x2

2+x2
3
(2x1, 2x2, 2x3, x

2
1 + x22 + x23 − 1)t.

Exercise 3.1. Using σ−1 as a coordinate patch for S3, show that the metric gS3
is equal to

gS3 =
4

(1 + x21 + x22 + x23)
2
(dx21 + dx22 + dx23).

As in the 2-dimensional case, the isometry group of S3 is O(4).

The spheres of S3 are again given by “planar slices” of S3 in R4: For some
m ∈ R4 and q ∈ R, spheres S̃S3 [m, q] are defined as

S̃S3 [m, q] := {x ∈ S3 : ⟨x,m⟩4 = q},

provided that the set is non-empty (and includes more than one point).

Exercise 3.2. Show that S̃S3 [m, q] is non-empty (and includes more than one
point) if and only if ⟨m,m⟩4 − q2 > 0.
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3.1.2 Hyperbolic 3-space

Similar to the 2-dimensional case, we define hyperbolic 3-space using Minkowski
4-space R3,1, equipped with indefinite inner product ⟨·, ·⟩3,1. Then two copies of
hyperbolic 3-space are obtained via

H3 := {x ∈ R3,1 : ⟨x, x⟩3,1 = −1}.

The Poincaré ball model is given by the stereographic projection τ from the
north pole, defined as

τ((x0, x1, x2, x3)
t) =

1

1 + x0
(x1, x2, x3).

Exercise 3.3. Check that for x = (x0, x1, x2, x3)
t ∈ H3,

(1)
⟨︁
τ(x), τ(x)

⟩︁
3
< 1 if and only if x0 > 0, and

(2)
⟨︁
τ(x), τ(x)

⟩︁
3
> 1 if and only if x0 < 0.

As in the 2-dimensional case, we call the Euclidean unit sphere in the Poincaré
ball model the ideal boundary, and the isometry group of H3 is O(3, 1).

Exercise 3.4. Show that each isometry group of R3, S3 and H3 is 6-dimensional.

Exercise 3.5. Viewing

τ−1((x1, x2, x3)
t) = 1

1−x2
1−x2

2−x2
3
(1 + x21 + x22 + x23, 2x1, 2x2, 2x3)

t

as a coordinate patch for H3, verify that

gH3 =
4

(1− x21 − x22 − x23)
2
(dx21 + dx22 + dx23).

Spheres in R3,1 are again given as intersections between a plane and H3.
Therefore, we view spheres S̃H2 [m, q] as

S̃H3 [m, q] = {x ∈ H2 : ⟨x,m⟩3,1 = q}

for some m ∈ R3 and q ∈ R. Once again, we have three types of spheres in the
hyperbolic 3-space, characterized by m:

• Bounded spheres arise when ⟨m,m⟩3,1 < 0. In the Poincaré ball model,
these spheres are represented as Euclidean spheres not intersecting the ideal
boundary.
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• Horospheres appear when ⟨m,m⟩3,1 = 0. These spheres become spheres
tangent to the ideal boundary in the Poincaré ball model.

• Unbounded spheres arise when ⟨m,m⟩3,1 > 0. In the Poincaré ball model,
these spheres appear as Euclidean spheres intersecting the ideal boundary
transversally.

Exercise 3.6. Show that S̃H3 [m, q] is non-empty (and includes more than one
point) if and only if ⟨m,m⟩3,1 + q2 > 0.

3.2 Minkowski 5-space

We now introduce the Minkowski model of Möbius geometry of spheres. Let R4,1

be the Minkowski 5-space, equipped with the indefinite inner product ⟨·, ·⟩ such
that

⟨X,Y ⟩ = −x0y0 + x1y1 + x2y2 + x3y3 + x4y4

for X = (x0, x1, x2, x3, x4)
t, Y = (y0, y1, y2, y3, y4)

t ∈ R4,1.

From the 4-dimensional lightcone

L = {X ∈ R4.1 : ⟨X,X⟩ = 0},

we define the 3-dimensional spaceforms Mκ as

Mκ = {X ∈ L : ⟨X, qκ⟩ = −1}

for some qκ ∈ R4,1 such that ⟨qκ, qκ⟩ = −κ.
After normalizing

qκ =

(︃
1

2
(κ+ 1),

1

2
(κ− 1), 0, 0, 0

)︃t

by applying a suitable transformation O(4, 1), we have the following bijection for
Rκ =

(︁
R3 ∪ {∞}

)︁
\
{︁
x : ⟨x, x⟩3 = − 1

κ

}︁
:

Lemma 3.7. The map ψκ : Rκ →Mκ defined by

(3.1) ψκ(x) =
1

1 + κ⟨x, x⟩2

⎛⎜⎝1 + ⟨x, x⟩2
1− ⟨x, x⟩2

2x

⎞⎟⎠
is a bijection for any choice of κ.
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Exercise 3.8. Prove Lemma 3.7 by showing that ϕκ :Mκ → Rκ defined via

(3.2) ϕκ(X) =
1

x0 + x1
(x2, x3, x4)

t

for X = (x0, x1, x2, x3, x4)
t satisfies ψ−1

κ = ϕκ.

We leave computing the metric of Mκ to an exercise.

Exercise 3.9. We compute the metric of Mκ as follows:

(1) Show that the tangent space of Mκ at X is

(3.3) TXMκ =

⎧⎪⎨⎪⎩Ta = 2
(1+κ⟨x,x⟩3)2

⎛⎜⎝ −(κ− 1)⟨x, a⟩3
−(κ+ 1)⟨x, a⟩3

a+ κ⟨x, x⟩3a− 2κ⟨x, a⟩3x

⎞⎟⎠
⎫⎪⎬⎪⎭

for a ∈ Rκ. (Hint: consider a curve x(t) : (−ϵ, ϵ) → Rκ such that X(0) = X

for X(t) := ψκ(x(t)) : (−ϵ, ϵ) →Mκ, and show that

X ′(t) = Tx′ ,

where ′ denotes differentiation with respect to t.)

(2) Verify

(3.4) ⟨Ta, Tb⟩ =
4

(1 + κ⟨x, x⟩3)2
⟨a, b⟩3.

Exercise 3.10. We can also compute the metric of Mκ via the method analogous
to the one used to show (2.9), by viewing ψκ as a coordinate chart: Compute
∂1ψκ, ∂2ψκ, and ∂3ψκ as in (2.8), and verify that

(3.5) gMκ
=

4

(1 + κ⟨x, x⟩3)2
(dx21 + dx22 + dx23).

The form of the metric for Mκ gives us the following theorem:

Theorem 3.11. Mκ has sectional curvature κ.
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3.3 Möbius subgeometries

We now explain how the 3-dimensional spaceforms with constant sectional cur-
vatures are represented by Mκ, by looking at concrete examples. In particular,
in the next example and exercises, we see how the Euclidean 3-space R3, the
3-sphere S3, and the hyperbolic 3-space H3 are obtained via Mκ for κ = 0, 1,−1,
respectively.

Example 3.12. Let κ = 1, giving us that qκ = (1, 0, 0, 0, 0)
t. Setting X =

(x0, x1, x2, x3, x4)
t, then X ∈M1 if and only if

−1 = ⟨X, q⟩ = −x0,

and
0 = ⟨X,X⟩ = −1 + x21 + x22 + x23 + x24.

Therefore, X = (1, xt)t ∈M1 for x = (x1, x2, x3, x4) if and only if

⟨x, x⟩4 = 1,

and we see that x ∈ S3.

Exercise 3.13. Show that M−1
∼= H3.

Exercise 3.14. For o, q ∈ L such that ⟨o, q⟩ = −1, let M0 be defined by

M0 := {X ∈ L : ⟨X, q⟩ = −1}.

(1) Show that span{o, q} ∼= R1,1, and hence deduce that span{o, q}⊥ ∼= R3.

(2) Show that ϕ : span{o, q}⊥ →M0 is a bijection if

ϕ(x) = x+ o+
1

2
⟨x, x⟩q,

with inverse
ψ(X) = X − o+ ⟨X, o⟩q,

telling us that M0
∼= R3.

As the metric (3.5) suggests, all 3-dimensional spaceforms Mκ are conformally
equivalent. Observing that for any value of κ, ψκ maps any point x ∈ Rκ to a
lightlike line defined by

span{1 + ⟨x, x⟩3, 1− ⟨x, x⟩3, 2xt)t},
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we identify all the different spaceforms Mκ with the projective lightcone P(L),
where

P(L) := {span{X} : X ∈ L} = {null lines in R4,1}.

We call the 3-dimensional projective lightcone the conformal 3-sphere.

3.4 Spheres in Möbius geometry

Analogous to the circles case in Section 2.5, we define spheres S̃ in Mκ as

S̃ := {X ∈Mκ : ⟨X,S⟩ = 0}

for some spacelike vector S ∈ R4,1. The scaling of S does not matter; hence, we
will always assume that ⟨S, S⟩ = 1.

In the next exercises, we verify that the above definition of spheres in Mκ is
consistent with the definition of spheres in the 3-sphere, hyperbolic 3-space, and
Euclidean 3-space.

Exercise 3.15. For a spacelike vector S := (q,m1,m2,m3,m4)
t ∈ R4,1, let

X ∈M1, that is, ⟨X, q1⟩ = −1.

(1) Show that for x = (x1, x2, x3, x4)
t ∈ S3, X = (1, x)t.

(2) Using Exercise 3.2, verify that X = (1, x)t ∈ S̃ if and only if x ∈ S̃S3 [m, q]

for m = (m1,m2,m3,m4)
t.

Exercise 3.16. For a spacelike vector S := (m0, q,m1,m2,m3)
t ∈ R4,1, let

X ∈M−1, i.e. ⟨X, q−1⟩ = −1.

(1) Show that for x = (x0, x1, x2, x3)
t ∈ H3, X = (x0, 1, x1, x2, x3)

t.

(2) Using Exercise 3.6, verify that X ∈ S̃ if and only if x ∈ S̃S3 [m, q] for
m = (m0,m1,m2,m3)

t.

Exercise 3.17. Let S = (s0, s1, s2, s3, s4)
t be a spacelike vector with s0+ s1 ̸= 0,

and X ∈ M0. Using Example 2.15 as a hint, show that X ∈ S̃ if and only if
x = ϕκ(X) satisfies⟨︃

x− s

s0 + s1
, x− s

s0 + s1

⟩︃
2

=
1

(s0 + s1)2
,

where s = (s2, s3, s4)
t.
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Hence, the space of spheres is represented by the de Sitter 4-space S3,1 defined
as

S3,1 := {S ∈ R4,1 : ⟨S, S⟩ = 1}.

Remark 3.18. Using the definition of spheres, we can show that four distinct
points in some spaceform always determine a sphere. Let x1, x2, x3, x4 be distinct
points in some 3-dimensional spaceform with constant sectional curvature κ, and
let X1, X2, X3, X4 ∈Mκ ⊂ L be their lifts, respectively. Since X1, X2, X3, and X4

are all lightlike, we have that span{X1, X2, X3, X4} must have indefinite metric.
Hence, we can choose a unit spacelike vector S ∈ R4,1 such that

S ̸∈ span{X1, X2, X3, X4} and S ⊥ span{X1, X2, X3, X4}.

Then, we have that

X1, X2, X3, X4 ∈ S̃ = {X ∈Mκ : ⟨X,S⟩ = 0},

telling us that X1, X2, X3, X4 are all in spheres determined by S.

Exercise 3.19. Let x1, x2, x3, x4 be generically-placed distinct points in some
3-dimensional spaceform with constant sectional curvature κ, and furthermore let
X1, X2, X3, X4 ∈Mκ ⊂ L be their lifts, respectively. Show that x1, x2, x3, x4 are
concircular if and only if X1, X2, X3, X4 are linearly dependent.

3.5 Möbius transformations

Möbius transformations map the conformal 3-sphere to the conformal 3-sphere,
such that spheres get mapped to spheres. Since the space of spheres is S3,1, we
can immediately deduce that O(4, 1) acts on the projective lightcone P(L) by the
usual matrix multiplication, and maps spheres to spheres. Therefore, we see that
Möbius transformations are represented by the Lie group O(4, 1).

On the other hand, it is a well-known fact that Möbius transformations in R3∪
{∞} are generated by reflection, homothety, rotation, translation, and inversion.
In this section, we present a few examples of these Möbius transformations of
R3 ∪ {∞} in terms of O(4, 1) matrices. In the next examples, let us take a
point x = (x1, x2, x3)

t ∈ R3 and its lift into the projective lightcone span{X} =

span{(1 + ⟨x, x⟩3, 1− ⟨x, x⟩3, 2xt)t} ∈ P(L).
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Example 3.20. If we define

A1 :=

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0

0 1 0 0 0

0 0 −1 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ O(4, 1),

then we have that

span{A1X} = span{(1 + ⟨x, x⟩3, 1− ⟨x, x⟩3,−2x1, 2x2, 2x3)
t}

= {t(1 + ⟨x, x⟩3, 1− ⟨x, x⟩3,−2x1, 2x2, 2x3)
t : t ∈ R}

∈ P(L).

To project this back down to M0
∼= R3, we calculate that for t = 1,

⟨tA1X, q0⟩ = −1.

Then using ϕκ as defined in (3.2), we see that A1X is projected as (−x1, x2, x3)t ∈
R3, telling us that A1 is a reflection with respect to the x2x3-plane.

Example 3.21. Defining

A2 :=

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0

0 −1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ O(4, 1),

we have that

span{A2X} = {t(1 + ⟨x, x⟩3,−1 + ⟨x, x⟩3, 2xt)t : t ∈ R}.

Then we can verify that for t = 1
⟨x,x⟩3 , ⟨tA2X, q0⟩ = −1. Projecting this down,

we see that A2 corresponds to the map

x ↦→ 1

⟨x, x⟩3
x,

an inversion.
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Exercise 3.22. Show that for

A3 :=

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0 0

0 1 0 0 0

0 0 cos θ − sin θ 0

0 0 sin θ cos θ 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ O(4, 1),

A3 acting on the projective lightcone P(L) is equivalent a rotation in R3 ∼= M0

with respect to the x3-axis, that is,

(x1, x2, x3)
t ↦→ (x1 cos θ − x2 sin θ, x1 sin θ + x2 cos θ, x3)

t.

Exercise 3.23. Show that for

A4 :=

⎛⎜⎜⎜⎜⎜⎜⎝
cosh(log r) − sinh(log r) 0 0 0

− sinh(log r) cosh(log r) 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ O(4, 1),

A4 acting on the projective lightcone P(L) is equivalent a homothety in R3 ∼=M0

with homothety factor r > 0, that is,

x ↦→ rx.

Exercise 3.24. For y = (y1, y2, y3)
t ∈ R3, let A5 be defined via

A5 :=

⎛⎜⎜⎜⎜⎜⎜⎝
1 + 1

2 ⟨y, y⟩3 1
2 ⟨y, y⟩3 y1 y2 y3

− 1
2 ⟨y, y⟩3 1− 1

2 ⟨y, y⟩3 −y1 −y2 −y3
y1 y1 1 0 0

y2 y2 0 1 0

y3 y3 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ∈ O(4, 1).

Show that A5 acting on the projective lightcone P(L) is equivalent a translation
in R3 ∼=M0 by y, that is,

x ↦→ x+ y.
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3.6 Cross-ratios

Cross-ratios are projectively invariant, and their natural treatment comes from
the context of projective geometry. The fact that we have a projective model of
Möbius geometry alludes to the fact that cross-ratios are Möbius invariant, since
Möbius transformations are projective transformations. However, in these notes,
we show the Möbius invariance the cross-ratios with the tools we have at hand.

Let X1, X2, X3, X4 ∈ L, and define the cross-ratio of the four points to be

(3.6) cr(X1, X2, X3, X4) :=
s12s34 + s14s23 − s13s24 ±

√
E

2s14s23

where sij = ⟨Xi, Xj⟩, and

E = s212s
2
34 + s213s

2
24 + s214s

2
23

− 2s13s14s23s24 − 2s12s14s23s34 − 2s12s13s24s34 ≤ 0.

Note that this definition is well-defined only up to complex conjugation; however,
as in [2], we will refer to the cross-ratios as if they are a complex number, and we
ask the readers to remember that the either member of the complex conjugate
pair can be the cross-ratio of given four points.

First, we check that this definition coincides with the cross-ratio of four-points
in the complex plane C. Recall that for z1, z2, z3, z4 ∈ C, we have that the
cross-ratios of four points z1, z2, z3, z4 are defined as

cr(z1, z2, z3, z4) =
z1 − z2
z2 − z3

z3 − z4
z4 − z1

.

Using the correspondence C ∼= R2 ⊂ R3 ∼=M0 via

C ∋ x1 +
√
−1x2 ∼ x = (x1, x2, 0)

t ∈ R3

∼ X = (1 + ⟨x, x⟩3, 1− ⟨x, x⟩3, 2xt)t ∈M0,

we can directly calculate and verify the following lemma:

Lemma 3.25. For z1, z2, z3, z4 ∈ C and corresponding X1, X2, X3, X4 ∈M0, we
have that

cr(z1, z2, z3, z4) = cr(X1, X2, X3, X4).

The form of the cross-ratio defined in (3.6) tells us two things: first, since the
expression is written completely in terms of the inner product of lightlike vectors
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in R4,1, applying any Möbius transformation to the four lightlike vectors will not
change the value under consideration, that is, for any A ∈ O(4, 1),

cr(X1, X2, X3, X4) = cr(AX1, AX2, AX3, AX4),

giving us the Möbius invariance of cross-ratios.

Furthermore, scaling X1, X2, X3, X4 ∈ L by α1, α2, α3, α4 ∈ R, respectively,
does not change the value of the cross-ratio, i.e.

cr(X1, X2, X3, X4) = cr(α1X1, α2X2, α3X3, α4X4).

Therefore, cross-ratios are notions that are well-defined not only for four points
in each choice of spaceform, but also for four points in the conformal 3-sphere
P(L) (or four null lines in L). This is the projective invariance of cross-ratios.
We recommend the readers to examine a more formal discussion of cross-ratios
through many textbooks on projective geometry; for example, [36] has insightful
description of projective geometry and cross-ratios.

Remark 3.26. Let x1, x2, x3, x4 ∈ R3 with lifts X1, X2, X3, X4 ∈ M0. One can
also calculate the cross-ratio of these four points in the following way: Since
four points always determine a sphere (see Remark 3.18), we can find a Möbius
transformation mapping the sphere to a plane in R3. Identifying the plane with the
complex plane, x1, x2, x3, x4 can be identified with z1, z2, z3, z4 ∈ C, respectively.
Then the Möbius invariance of cross-ratios and Lemma 3.25 guarantees us that

cr(X1, X2, X3, X4) =
z1 − z2
z2 − z3

z3 − z4
z4 − z1

= cr(z1, z2, z3, z4).

Exercise 3.27. Show that X1, X2, X3, X4 ∈ P(L) are concircular if and only if
cr(X1, X2, X3, X4) ∈ R. (Hint: One way to show this is to use the fact that the
cross-ratio is real if and only if E = 0. One could also show this for four points in
the complex plane, and use Remark 3.26.)

Remark 3.28. Let x1, x2, x3, x4 ∈ R3 with lifts X1, X2, X3, X4 ∈ M0. Then we
have the identification

R3 ∋ x = (a, b, c)t ∼ h = ai+ bj + ck ∈ ImH

∼ A =

(︄ √
−1c a+

√
−1b

−a+
√
−1b −

√
−1c

)︄
∈ su(2),
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where H denotes the set of quaternions, and su(2) is the Lie algebra associated
with the special unitary group SU(2). Then using quaternionic multiplication
and inverse, one can compute that

cr(X1, X2, X3, X4) = (h1 − h2)(h2 − h3)
−1(h3 − h4)(h4 − h1)

−1,

or using the usual matrix multiplication and inverse, one has that

cr(X1, X2, X3, X4) = (A1 −A2)(A2 −A3)
−1(A3 −A4)(A4 −A1)

−1.

4 Isothermic surfaces

In this section, we introduce isothermic surfaces within the context of conformal
geometry.

4.1 Surface theory

We briefly review the surface theory in three dimensional spaceforms. In the fol-
lowing discussions and throughout these notes, let Σ ⊂ R2 be a simply-connected
domain.

4.1.1 Surfaces in Euclidean space

Let x : Σ → R3 be a smooth surface with normal n : Σ → S2, that is,

n =
xu × xv√︁

⟨xu × xv, xu × xv⟩3
,

where xu = ∂
∂ux denotes the partial derivative of x with respect to u. The first

fundamental form of a surface x is

(4.1) I =

(︄
⟨xu, xu⟩3 ⟨xu, xv⟩3
⟨xv, xu⟩3 ⟨xv, xv⟩3

)︄
=:

(︄
g11 g12
g21 g22

)︄
,

while the second fundamental form is

(4.2) II =

(︄
⟨xuu, n⟩3 ⟨xuv, n⟩3
⟨xvu, n⟩3 ⟨xvv, n⟩3

)︄
=:

(︄
b11 b12
b21 b22

)︄
.
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We can calculate that for nu = axu + cxv and nv = bxu + dxv,

II = −
(︄
⟨nu, xu⟩3 ⟨nv, xu⟩3
⟨nu, xv⟩3 ⟨nv, xv⟩3

)︄
=

(︄
ag11 + cg12 bg11 + dg12
ag12 + cg22 bg12 + dg22

)︄

= −I

(︄
a b

c d

)︄
,

where we used the fact that g12 = g21. Therefore, we have(︄
a b

c d

)︄
= −I−1II.

The eigenvectors of I−1II tell us directions where n bends straightest, i.e. principal
curvature directions, and the eigenvalues give us the principal curvatures.

Exercise 4.1. Calculate the first and second fundamental form of the following
surfaces in the Euclidean space:

(1) the plane, given by x(u, v) = (u, v, 0)t,

(2) circular cylinder, given by x(u, v) = (cosu, sinu, v)t, and

(3) catenoid, given by x(u, v) = (2 cosh v cosu, 2 cosh v sinu, 2v)t.

4.1.2 Surfaces in the 3-sphere

Now let x : Σ → S3 be a surface in the 3-sphere. The normal n is given by

n(u, v) ∈ Tx(u,v)S3 and ⟨n, xu⟩4 = 0 = ⟨n, xv⟩4

at each point (u, v) ∈ Σ, so that

x, span {xu, xv}, n are all perpendicular.

The first fundamental form I and second fundamental form II for surfaces in the
3-sphere are then calculated the same way as in the Euclidean case, (4.1) and
(4.2), respectively.

Exercise 4.2. Calculate the first and second fundamental form of the following
surfaces in the 3-sphere:
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(1) equatorial sphere, given by

x(u, v) = (cosu cos v, cosu sin v, sinu, 0)t,

and

(2) Ciifford torus, given by x(u, v) = 1√
2
(cosu, sinu, cos v, sin v)t.

4.1.3 Surfaces in the hyperbolic space

For a surface x : Σ → H3, the normal n is given similarly to that in the 3-sphere,

n(u, v) ∈ Tx(u,v)S3 and ⟨n, xu⟩3,1 = 0 = ⟨n, xv⟩3,1,

so that
x, span {xu, xv}, n are all perpendicular

with respect to the inner product ⟨·, ·⟩3,1. Using the normal n, the first fundamen-
tal form I and second fundamental form II for surfaces in the 3-sphere are again
calculated the same way as in the Euclidean case, (4.1) and (4.2), respectively.

Exercise 4.3. Calculate the first and second fundamental form of the following
surfaces in the hyperbolic space:

(1) equatorial sphere, given by

x(u, v) = (coshu, sinhu cos v, sinhu sin v, 0)t,

and

(2) sphere, given by x(u, v) = (a coshu, a sinhu cosu, a sinhu sin v, b)t for b2 −
a2 = −1.

4.2 Isothermic surfaces in spaceforms

Given a surface without umbilics (i.e. a surface with distinct principal curvatures
on Σ) in some spaceform of constant sectional curvature, one can always find
curvature line coordinates (u, v) ∈ Σ, i.e.

g12 = 0 and b12 = 0,

or
xu ⊥ xv and xuv ∈ span{xu, xv}
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where the perpendicularity depends on the ambient space. On the other hand,
one can also always find conformal coordinates (u, v) ∈ Σ, that is,

g11 = g22 and g12 = 0.

Definition 4.4 ([6]). A surface is isothermic if there exist conformal curvature
line coordinates, or isothermic coordinates.

Exercise 4.5. Check that all of the surfaces in Exercises 4.1, 4.2, 4.3 are isother-
mic. (Note: some surfaces may require a coordinate stretching.)

We now characterize the isothermicity of a surface via the cross-ratios defined
in Section 3.6. To do this, let x be a surface in some spaceform with constant
sectional curvature, parametrized by curvature line coordinates (u, v) ∈ Σ, and
X : Σ → Mκ be its lift. For some ϵ > 0, write X(u, v), X(u+ ϵ, v), X(u+ ϵ, v +

ϵ), X(u, v + ϵ) as X1, X2, X3, X4, respectively. Then from (3.6),

crϵ := cr(X1, X2, X3, X4) =
ϵ−4

ϵ−4

s12s34 + s14s23 − s13s24 ±
√
E

2s14s23
.

Note that for any X1, X2, X3 ∈ L, we have

⟨X1, X2⟩ = −1

2
⟨X2 −X1, X2 −X1⟩

and that

⟨X1, X3⟩ = −1

2
⟨X3 −X1, X3 −X1⟩

= −1

2
⟨X3 −X2 +X2 −X1, X3 −X2 +X2 −X1⟩

= − 1

2

(︁
⟨X3 −X2, X3 −X2⟩+ 2⟨X3 −X2, X2 −X1⟩

+ ⟨X2 −X1, X2 −X1⟩
)︁
.

Using these expressions, we can calculate that

lim
ϵ→0

E = 0,

and that

lim
ϵ→0

crϵ =
⟨Xu,Xu⟩2+⟨Xv,Xv⟩2−(⟨Xu,Xu⟩+2⟨Xu,Xv⟩+⟨Xv,Xv⟩)2

2⟨Xv,Xv⟩2 .

Finally, using (3.4), we learn that

lim
ϵ→0

crϵ =
g211 + g222 − (g11 + g22)

2

2g222
=

−2g11g22
2g222

= −g11
g22

.
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Lemma 4.6. Let x be a surface parametrized by curvature line coordinates (u, v),
and let X be its lift into Mκ. Then,

lim
ϵ→0

crϵ = −g11
g22

.

Now we turn to the condition that characterizes the isothermicity of a surface
parametrized by curvature lines.

Lemma 4.7. Let x be a surface parametrized by curvature line coordinates (u, v).
x is isothermic if and only if

(4.3)
g11
g22

=
α(u)

β(v)

for some strictly positive functions α and β.

Proof. If the surface is isothermic, then g11 = g22, so one direction is trivially
true. Now suppose that (4.3) holds. Define

ũ(u) :=

∫︂ √︁
α(u) du and ṽ(v) :=

∫︂ √︁
β(v) dv

so that (︃
dũ

du

)︃2

= α(u) and
(︃
dṽ

dv

)︃2

= β(v).

Since α and β are strictly positive, ũ and ṽ are monotone increasing functions.
Therefore, we use ũ and ṽ as coordinate change functions and consider x(ũ, ṽ).
Labeling the coefficients of first and second fundamental form calculated with
respect to coordinates (ũ, ṽ) as g̃ij and b̃ij , respectively, the chain rule then tells
us that

g̃11 = g11

(︃
du

dũ

)︃2

=
g11
α(u)

=
g22
β(v)

= g22

(︃
dṽ

dv

)︃2

= g̃22,

while
g̃12 = g12

du

dũ

dv

dṽ
= 0 = b12

du

dũ

dv

dṽ
= b̃12.

Hence, (ũ, ṽ) are isothermic coordinates for x.

Combining the two lemmata, we arrive at the following important characteri-
zation of isothermic surfaces:
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Theorem 4.8. Let x be a surface parametrized by curvature line coordinates
(u, v) and X be its lift into Mκ. Then x is isothermic if and only if

(4.4) lim
ϵ→0

crϵ = −α(u)
β(v)

for some strictly positive functions α, β.

The cross-ratios characterization of isothermic surfaces lets us apply the prop-
erties of cross-ratios to the theory of isothermic surfaces: First, noting that Möbius
transformations are diffeomorphisms which preserve the order of contact (see [39,
Proposition 2.6], for example), we see that Möbius transformations preserve curva-
ture lines. Since cross-ratios are also Möbius invariant, we see that isothermicity
is also Möbius invariant.

Furthermore, the projective invariance of cross-ratios tells us that above char-
acterization of isothermic surfaces is projectively invariant as well: X(u, v) is
isothermic if and only if c(u, v)X(u, v) is isothermic.

Therefore, we see that isothermicity is a well-defined notion for surfaces in the
conformal 3-sphere, letting us treat isothermic surfaces in any spaceforms with
constant sectional curvature uniformly.

4.3 Discrete isothermic surfaces in spaceforms

In this section, we describe how discrete isothermic surfaces are defined in Möbius
geometry. In the discretization process of a smooth geometric object (usually,
a class of surfaces), one not only needs to define the discrete object, but also
justify the definition by recovering a comprehensive theory of the geometric object
in question in the language of discrete differential geometry. For example, the
definition of discrete isothermic surfaces (which we describe below) has been
shown to satisfy the following characteristics, like for the smooth counterpart,
within the context of discrete differential geometry: discrete isothermic surfaces

• include many well-known subclasses such as discrete minimal surfaces or
discrete cmc surfaces (with discrete mean curvature having its own justifi-
cation) [2], [29],

• arises from the permutability of Darboux transformations for smooth isother-
mic surfaces [26],

72



4. ISOTHERMIC SURFACES

• are characterized by the existence of Christoffel transformations [2, Theorem
6],

• allow for second order deformations in Möbius geometry via Calapso trans-
formations [28, Definition 3.11], and

• admit Darboux transformations having discrete Ribaucour sphere congru-
ences [29].

We introduce how one can recover the definition of discrete isothermic surfaces
within the context of Möbius geometry, so that the notion is extended to surfaces
in all spaceforms with constant sectional curvature.

For (m,n) ∈ Z2, and let f : Z2 → R3,S3 or H3, and F : Z2 → Mκ be the
lift of f into the lightcone. In the discrete case, we write fm,n = f(m,n), and
we also sometimes abbreviate f(m,n), f(m + 1, n), f(m + 1, n + 1), f(m,n + 1)

as fi, fj , fk, fℓ, respectively. Finally, we call (ijkℓ) in the domain an elementary
quadrilateral.

The uniform approach for studying smooth isothermic surfaces in conformal 3-
sphere gives a hint to a uniform discretization of isothermic surfaces in spaceforms.
The cross-ratios characterization in Theorem 4.8 gave us the projective invariance
and Möbius invariance of isothermic surfaces for free: therefore, we use the cross-
ratios condition (4.4) as the starting point of our discretization:

From (4.4), we replace X(u, v) by F (m,n), and drop the limit (since limits
do not exist in the discrete case) to get

cr(Fm,n, Fm+ϵ,n, Fm+ϵ,n+ϵ, Fm,n+ϵ) = −αm

βn
.

Finally, letting ϵ = 1 since our domain is Z2, we get the definition of discrete
isothermic surfaces in [2, Definition 1] and [5, Corollary 3.5]:

Definition 4.9. Let f be a discrete surface over Z2 into some spaceform with
constant sectional curvature, and let F : Z2 →Mκ be its lift. Then f is isothermic
if, on any elementary quadrilateral,

cr(Fm,n, Fm+1,n, Fm+1,n+1, Fm,n+1) = −αm

βn
.

Note that in the statement for Lemma 4.6, if we assume isothermicity, or
conformal curvature line condition, then g11 = g22, so

lim
ϵ→0

crϵ = −1.
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Discretizing this relation gives:

Definition 4.10. Let f be a discrete surface over Z2 into some spaceform with
constant sectional curvature, and let F : Z2 →Mκ be its lift. Then f is isothermic
if, on any elementary quadrilateral,

cr(Fm,n, Fm+1,n, Fm+1,n+1, Fm,n+1) = −1.

Definition 4.9 of discrete isothermic surfaces is called the definition in the
broad sense, while that in Definition 4.10 is called the definition in the narrow
sense.

Remark 4.11. The difference arises from the fact that unlike smooth counterparts,
discrete surfaces cannot be readily reparametrized. For example, one must use
the broad sense definition to show that discrete isothermic surfaces admit Calapso
transformations.

Exercise 4.12 (Discrete Clifford torus with non-constant cross-ratios). We let
mper, nper be some constants (representing the length of the periodicity in the
m, n, directions, respectively, and consider

f(m,n) =
(︂
cos 2πn

nper

(︂√
2 + cos 2πm

mper

)︂
, sin 2πn

nper

(︂√
2 + cos 2πm

mper

)︂
, sin 2πm

mper

)︂
.

Show that f has cross-ratios

cr(Fi, Fj , Fk, Fℓ) =
− sin2 π

mper

sin2 π
nper

(︂√
2 + cos 2πm

mper

)︂(︂√
2 + cos 2π(m+1)

mper

)︂ .
Exercise 4.13 (Discrete Clifford torus with constant cross-ratios). Consider

f(m,n) = 1√
2+cos

2πm
mper

(︂
sin 2πm

mper
, cos 2πn

nper
, sin 2πn

nper

)︂
.

Show that F has cross-ratios

cr(Fi, Fj , Fk, Fℓ) = −1.

5 Recommended further selected readings

Here, we recommend some literature for those interested in further study of
surface theory and discretizations in sphere geometries. The list here is by no
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means exhaustive, as we only list the works that have had a direct influence in
the creation of these notes.

For a more comprehensive introduction to Möbius geometry, using both the
Minkowski model and the quaternionic model, we recommend the encyclopedic
book [27] by Udo Hertrich-Jeromin. The book generalizes the discussion of
Möbius geometry to the conformal n-sphere, and discusses both smooth and
discrete isothermicity. Another remarkable feature of the book is the explanation
of the historical context of isothermic surfaces and their transformations.

Isothermic surfaces constitute an integrable class of surfaces, as shown by [22],
and hence their transformations can be explained via the dressing methods of [40].
The work by Francis Burstall [7] takes this point of view, and describes isothermic
surfaces in the general conformal n-sphere using Clifford algebra. Furthermore,
this work shows that the the simple factor dressings of Terng and Uhlenbeck [37,
38] in the context of isothermic surfaces amounts to Darboux transformations.

The unified description for the theory of conformal geometry and isothermic
surfaces can be obtained if one utilizes the machinery of gauge theoretic and
vector bundle approach. This is the viewpoint taken by Francis Burstall and
David Calderbank in their work [9, 10].

One can even generalize the concept of isothermicity further, and the work of
Francis Burstall, Neil Donaldson, Franz Pedit, and Ulrich Pinkall does exactly
this in [12] by defining isothermicity in symmetric R-spaces, offering conformal
geometry as an example. Furthermore, they relate the discrete theory to the
smooth theory in the paper.

For a more elementary introduction, we recommend the excellent notes by
Francis Burstall [8]. In these notes, the theory of integrable surfaces is presented
via the existence of a 1-parameter family of flat connections, and describes the
transformations in this context, providing K-surfaces (surfaces with negative
constant Gaussian curvature) and isothermic surfaces as examples, including the
formulation of the well-known Bäcklund transformations and Darboux transfor-
mations, respectively.

Another work highly suited for understanding the theory of conformal geom-
etry in the Minkowski picture is the doctoral thesis [34] of Susana Santos. The
thesis contains numerous explicit calculations that should help anyone interested
in the Minkowski model of Möbius geometry.
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Within the context of 1-parameter family of flat connections of isothermic
surfaces arises the concept of polynomial conserved quantities: these serve as a
powerful tool for identifying certain classes of surfaces, including minimal and
constant mean curvature surfaces, from the class of isothermic surfaces. A paper
by Francis Burstall and Susana Santos develops the theory of polynomial con-
served quantities for isothermic surfaces and their behavior under transformations
in [18].

Möbius geometry is not too distant from Lie sphere geometry: if Möbius geom-
etry is concerned with transformations that map points to points, and spheres to
spheres, Lie sphere geometry generalizes Möbius geometry in that it is concerned
with transformations that map points and spheres to points and spheres. (In fact,
Möbius geometry is a subgeometry of Lie sphere geometry.) One has the classical
work [1] by Wilhelm Blaschke, and also Thomas Cecil’s recent book [20] serves
as a great introduction to Lie sphere geometry.

In Möbius geometry, isothermic surfaces are the deformable class of surfaces,
as shown in [19]; in Lie sphere geometry, the class of Ω-surfaces (defined by
Demoulin in [23–25]) plays the role of the deformable class of surfaces [1]. Ω-
surfaces can be characterized as having a pair of isothermic sphere congruences;
therefore, the rich theory of isothermic surfaces can be extended to surfaces that
are not isothermic, but are Ω: for example, flat surfaces and linear Weingarten
surfaces. For a clean description of Ω-surfaces utilizing the gauge theoretic tools
and vector bundles, we recommend the doctoral thesis [32] by Mason Pember.

In fact, using the polynomial conserved quantities, one can identify certain
classes of surfaces among Ω-surfaces as well. Francis Burstall, Udo Hertrich-
Jeromin, and the second author characterizes flat surfaces in H3 in [15] and linear
Weingarten surfaces in [16]. Then, Francis Burstall, Udo Hertrich-Jeromin, Mason
Pember, and the second author further characterizes isothermic surfaces, Guichard
surfaces, and L-isothermic surfaces as subclasses of Ω-surfaces via polynomial
conserved quantites in [13].

Moving onto discrete surface theory, one must start from the broadly encom-
passing book [4] written by Alexander Bobenko and Yuri Suris. The book contains
results of many different papers that formulated the theory of discrete differential
geometry with integrability at its heart, including [3] on discrete K-surfaces, [2]
on discrete isothermic surfaces and discrete minimal nets, [5] on the Möbius geo-
metric characterization of discrete isothermic surfaces, [33, 35] on discrete mean

76



5. RECOMMENDED FURTHER SELECTED READINGS

and Gaussian curvature via discrete Steiner’s formula, to name a few.

Among the subclasses of discrete isothermic surfaces, various classes have been
discretized: Building on the definition of discrete minimal surfaces of Bobenko
and Pinkall in [2], Udo Hertrich-Jeromin recovers the Calapso transformations
for discrete isothermic surfaces, and defines discrete constant mean curvature 1
surfaces in [28]. Then using the cmc-1 surfaces in H3, Tim Hoffmann, the second
author, Takeshi Sasaki, and Masaaki Yoshida discretizes the flat surfaces and
linear Weingarten surfaces of Bryant type in H3 in [31].

Using a bit of a different approach, discrete constant mean curvature surfaces
in the Euclidean space are defined in [29] by Udo Hertrich-Jeromin, Tim Hoffman,
and Ulrich Pinkall, using a characterization for smooth constant mean curvature
surfaces found in [30].

The flat connections approach is again well-suited to studying the theory of
discrete isothermic surfaces and their transformations. This approach is explored
in [17] by Francis Burstall, Udo Hertrich-Jeromin, the second author, and Susana
Santos, where they characterize discrete isothermic surfaces in the Minkowski
model of Möbius geometry via the existence of a 1-parameter family of discrete
flat connections, and define discrete polynomial conserved quantities to identify
discrete constant mean curvature surfaces among discrete isothermic surfaces,
making contact with the previous definition of discrete cmc surfaces.

With the concept of polynomial conserved quantities available in the discrete
setting, Francis Burstall, Udo Hertrich-Jeromin, and the second author defines
discrete linear Weingarten surfaces in the context of Lie sphere geometry in
the work [14]. Discrete Ω-surfaces are lightly touched upon here, and a more
comprehensive approach to discrete Ω-surfaces is done in [11].

Finally, for those who found the approach and explanation in these notes
helpful in studying Möbius geometry, we recommend reading [21]. The work uses
a similar approach to explaining isothermic surfaces and their transformations in
Möbius geometry and Ω-surfaces and their transformations in Lie sphere geometry,
with the aim of understanding the underlying integrable structure of discrete
isothermic surfaces and sphere congruences.
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Abstract

In this note, we discuss topological crystallography, which is a mathe-
matical theory of crystal structures. The most symmetric structure among
all placements of the graph is obtained by a variational principle in topolog-
ical crystallography. We also discuss a theory of trivalent discrete surfaces
in 3-dimensional Euclidean space, which are mathematical models of crys-
tal/molecular structures.

1 Introduction

Geometric analysis is a field of analysis on geometric objects such as manifolds,
surfaces, and metric spaces. Discrete geometric analysis is an analysis on discrete
geometric objects, for example, graphs, and contains the spectral theory and the
probability theory of graphs. Topological crystallography and a discrete surface
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Anam Lecture Notes in Mathematics Volume 2



1. INTRODUCTION

theory based on crystal/molecular structures are also parts of discrete geometric
analysis.

Topological crystallography is a mathematical theory of crystal structures,
which is founded by M. Kotani and T. Sunada [20–22, 39]. In physics, chemistry,
and mathematics, crystal structures are described by space groups, which denote
symmetry of placements of atoms. The usual description of crystals contains
bonds between atoms in crystals. However, space groups do not consider such
atomic bonds. Graphs are also natural notions to describe crystal structure,
since vertices and edges of graphs correspond to atoms and atomic bonds in
crystals, respectively. On the other hand, one of the important notions of physical
phenomena is the principle of the least action, which corresponds to the variational
principle in mathematics. That is to say, to describe physical phenomena, first
we define an energy functional, which is called a Lagrangian in physics, and then
we may find such phenomena as minimizers of the energy functional. There is
no direct relationship between descriptions of crystal structures by using space
groups and the principle of the least action.

Topological crystallography gives us a direct relationship between symmetry
of crystal structures and the variational principle. Precisely, for a given graph
structure which describes a crystal, we define the energy of realizations of the
graph (placements of vertices of the graph in suitable dimensional Euclidean
space), and obtain a “good” structure as a minimizer of the energy. Moreover,
such structures give us most symmetric among all placements of the graph, which
is proved by using the theory of random walk on graphs.

Molecular structures can be also described by using graph theory. The Hückel
molecular orbital method, which is an important theory in physical chemistry,
and the tight binding approximation for studying electronic states of crystals can
be regarded as spectral theories of graphs from mathematical viewpoints. In this
way, discrete geometric analysis can be applied to physics, chemistry, and related
technologies.

In the first few sections, we discuss topological crystallography including
graph theory and geometry. The most important bibliography of this part is
T. Sunada’s lecture note [38]. The author discusses an introduction to topological
crystallography along with it.

On the other hand, we can regard some of crystal/molecular structures, for
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example, fullerenes and carbon nanotubes (see Section 3.3), as surfaces, especially,
as discrete surfaces. Recently, sp2-carbon structures (including fullerenes and
nanotubes) are paid attention to in sciences and technologies, since they have
rich π-electrons and hence rich physical properties. In mathematical words, sp2-
carbon structures can be regarded as trivalent graphs in R3, and hence trivalent
discrete surfaces. There are many discrete surface theories in mathematics, but
they are discretization or discrete analogue of continuous/smooth objects. For
example, discrete surfaces of triangulations are used in computer graphics, which
is a discretization of smooth real objects. In other words, conventional discrete
surface theories are “from continuous to discrete”. In contrast, discrete surfaces,
which describe crystal/molecular structures, are essentially discrete. Even for the
case of trivalent discrete surfaces, it is not easy to define curvatures of them.

In the last few sections, we discuss a theory of trivalent discrete surfaces in R3,
and also discuss subdivisions/convergences of them. Hence, our discrete surface
theory is “from discrete to continuous”.

2 Preliminaries

2.1 Graph theory

Here, we prepare a graph theory to describe topological crystals and discrete
surfaces. Definitions and notations are followed by standard text books of graph
theory, for example [3, 5].

Definition 2.1. An ordered pair X = (V,E) is called a graph, if V is a countable
set and E = {(u, v) : u, v ∈ V }. An element v ∈ V is called a vertex of X, and an
element e ∈ E is called an edge of X. For each element e = (u, v) ∈ E, we may
also write u = o(e) and v = t(e), which are called the origin and the terminus of
e.

Definition 2.2. A graph X = (V,E) is called finite, if the number of vertices
|V | and the number of edges |E| are finite.

For a vertex v ∈ V , write Ev = {(v, u) ∈ E}, which is the set of edges
with o(e) = v. The number of edges emanating with v ∈ V is called the degree
deg(v) = |Ev| of v. If deg(v) is finite for any v ∈ V , then the graph X is called
locally finite. For any e = (u, v) ∈ E, e = (v, u) ∈ E, thenX is called non-oriented,
otherwise X is called oriented.
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In this note, we only consider non-oriented and locally finite graphs. Moreover,
we admit graphs which contain a loop (u, u) ∈ E and multiple edges.

Definition 2.3. For a graph X = (V,E), successive edges

(u1, u2)(u2, u3) · · · (uk−2, uk−1)(uk−1, uk).

where (ui, uj) ∈ E, is called a path between u1 and uk, and if u1 = uk and the
path does not contains backtracking edges, it is called a closed path. A graph
is connected, if there exists a path between arbitrary two vertices. A connected
graph is called tree, if the graph contains no closed path.

Example 2.4. Both graphs in Fig. 2.1 are the same as each other, and are called
K4 graph. Each vertex of K4 graph is connected with all of the other vertices.
A graph with such a property is called a complete graph. The K4 graph is the
complete graph with 4 vertices.

Figure 2.1: K4 graph, each is different figure of the same graph.

Definition 2.5. Let X = (V,E) be a finite graph with V = {vi}ni=1. The
adjacency matrix A = AX of X is an n× n matrix defined by

aij = number of edges (vi, vj).

If a graph X is non-oriented, then the adjacency matrix of X is symmetric.

Remark 2.6. Let A be an adjacency matrix of a graph X,

(1) (i, j)-element of Ak expresses number of paths from vi to vj by k-steps

(2) if An−1 (n = |V |) is not block diagonal, then X is connected

(3) if X is simple and non-oriented, then (1/6) tr(A3) expresses the number of
triangles contained in X
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(a) (b) (c) (d)
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0 1 1 1
1 0 1 1
1 1 0 1
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⎤⎥⎥⎦ [︁
3
]︁ [︃

3 0
0 3

]︃ ⎡⎣0 2 2
2 0 2
2 2 0

⎤⎦
Figure 2.2: Examples of graphs and their adjacency matrices.

Definition 2.7. Let X = (V,E) be a finite non-oriented graph. A tree X1 =

(V,E1) is called a spanning tree of X, if it satisfies E1 ⊂ E and for any e ∈ E \E1,
(V,E1 ∪ {e}) contains a closed path (see Fig. 2.3).

Figure 2.3: Each graph is a spanning tree of K4 graph.

Now, we also consider homology groups of graphs. A graph X = (V,E) can
be considered as a 1-dimensional CW complex as follows: the 0-dimensional chain
group C0 is the Z-module consisted by V , and the 1-dimensional chain group C1

is the Z-module consisted by E. The boundary operator ∂ : C1 −→ C0 is defined
by

∂(e) = t(e)− o(e),

where o(e) and t(e) are the origin and terminus of the edge e, namely, o(e) = u

and t(e) = v, if e = (u, v). The homology group H0(X,Z) and H1(X,Z) is defined
by

H1(X,Z) = ker ∂ ⊂ C1(X), H0(X,Z) = C0(X)/ image ∂.

The following proposition explains particular properties for the first homology
group on graphs.
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Proposition 2.8 (Sunada [39]). Let X = (V,E) be a locally finite graph. Then,
any non-trivial closed path e satisfies [e] ̸= [0] ∈ H1(X,Z). Conversely, for each
non-zero element h ∈ H1(X,Z), there exists a closed path e in X such that h = [e].

Proof. Let e = e1 · · · ek (ei ∈ E) a path in X. Then, we may write e = e1 + · · ·+
ek ∈ C1(X,Z), and ∂(e) = t(e1)− o(e1)+ t(e2)− o(e2)+ · · ·+ t(ek)− o(ek). Since
o(ei+1) = t(ei), we obtain ∂(e) = t(e1) − o(ek). Assuming e is closed, that is
o(e1) = t(ek), we obtain ∂(e) = 0, and [e] ̸= [0] ∈ H1(X,Z).

Conversely, we take an h ∈ H1(X,Z) = ker ∂ ⊂ C1(X,Z), and let C1(X) =

span{ei : i = 1, . . . , n}, then there exists αi ∈ Z such that h = α1e1 + · · ·+ αnen,
and ∂h = 0. The equation ∂h =

∑︁
αi(t(ei)− o(ei)) implies h is the sum of closed

paths (see [38, p.41]).

Proposition 2.8 implies that an elements of H1(X,Z) corresponds to a closed
path of X. Hence we obtain a method for counting the rank of H1(X,Z).

Proposition 2.9. Let X = (V,E) be a finite non-oriented graph, and X1 =

(V,E1) be a spanning tree of X. Then, the first homology group H1(X,Z) of X
satisfies rankH1(X,Z) = |E| − |E1|.

Proof. Since X1 is a tree, X1 does not contain closed path. For each edge
e0 = (u, v) ∈ E \E1, we may find unique path e = e1 · · · ek in X1 with o(e1) = v,
t(ek) = u, and hence, ˜︁e0 = e0e is a closed path inX. By Proposition 2.8, we obtain
[ ˜︁e0] ∈ H1(X,Z). Therefore, for each ei ∈ E \ E1, there exists [˜︁ei] ∈ H1(X,Z) by
a similar manner, and {[˜︁ei]} are linearly independent.

Example 2.10. The rank of the first homology group of graphs in Fig. 2.2 are (a)
3, (b) 3, (c) 2, and (d) 4, respectively.

Remark 2.11. An algorithm to find a spanning tree of a finite graph is well-known
as Kruskal’s algorithm, which finds a spanning tree within O(|E| log |E|) (see for
example [1]).

2.2 Covering spaces

Definitions and notations are followed by standard text books of geometry and
topology, for example [36].
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Definition 2.12. Let X and X0 be topological spaces. The space X is a covering
space ofX0 if there exists a surjective continuous map p : X −→ X0, which is called
a covering map, such that for each x ∈ X0, there exists an open neighbourhood
U of x and open sets {Vi} ⊂ X satisfying p−1(U) = ⊔Vi with p|Vi

: Vi −→ U

homeomorphic.

Theorem 2.13.

(1) For any topological space X0, there exists the unique simply connected cov-
ering space X̃, which is called the universal covering of X0.

(2) If p : X −→ X0 is a covering map, then there exists a transformation group
T on X such that for any σ ∈ T , p ◦ σ = p. The group T is called the
covering transformation group.

(3) The covering transformation group of p : X̃ −→ X is the fundamental group
π1(X) of X.

X̃ X X0

{e} π1(X) π1(X0)

q

covering

p

covering
p∗

hom.

q∗

hom.

p ◦ q
covering

q∗ ◦ p∗
hom.

Example 2.14.

(1) The real line R is a covering space of S1, since p : R −→ S1, p(x) = x

(mod 2π). Since R is simply connected and the covering transformation
group of p is Z, we obtain π1(S1) ∼= Z.

(2) The 2-dimensional Euclidean space R2 is a covering space of T 2 = R2/Z2,
since p : R2 −→ T 2, p(x, y) = (x (mod 2π), y (mod 2π)). Since R2 is simply
connected and the covering transformation group of p is Z2, we obtain
π1(T

2) ∼= Z2.

Definition 2.15 (Sunada [39]). A covering p : X −→ X0 with an abelian cov-
ering transformation group is called an abelian covering. For any topological
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space X0, there exists a maximal abelian covering space X, since H1(X0,Z) =
π1(X0)/[π1(X0), π1(X0)] is a maximal abelian subgroup of π1(X0)

Example 2.16. The universal covering graph of the 3-bouquet graph X (Fig. 2.2
(b)) is a tree graph with the degree 3. The fundamental group π1(X) is the
free group with 3 elements, and the first homology group H1(Z,Z) is Z3. For
any normal subgroup S ⊂ H1(X,Z), there exists a graph XS such that XS is a
covering graph of X with its covering transformation group S.

3 Topological crystals and their standard realization

The classical description of crystallography is based on group theory, and they
describe symmetries of crystals. For example, in the classical crystallography, the
diamond crystal is classified as the space group Fd3m (see Section A.1), and the
group does not contain information of chemical bonds of atoms in the crystal.

The theory of topological crystals is developed by Kotani–Sunada [19–22].
The theory describes symmetries of crystals including chemical bonds of atoms,
and it is based on variational problems.

3.1 Topological crystals and their realizations

In this section, we assume that graphs are connected non-oriented locally finite,
which may include self-loops and multiple edges.

Definition 3.1 (Sunada [39]). A connected non-oriented locally finite graph
X = (V,E), which may include self-loops and multiple edges, is called a topological
crystal (or a crystal lattice), if and only if there exists an abelian group G which
acts freely on X. The topological crystal is d-dimensional if the rank of the
abelian group G is d.

By this definition, for a topological crystal X = (V,E), there exists a fi-
nite graph X0 = (V0, E0) satisfying X/G = X0, for an abelian subgroup G ⊂
H1(X0,Z), and X is a covering graph of X0 whose covering transformation
group is G. On the contrary, for a given connected non-oriented finite graph
X0 = (V0, E0) and an abelian subgroup G ⊂ H1(X0,Z), there exists a topological
crystal X with X/G = X0, by taking a suitable covering graph.
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Definition 3.2 (Sunada [39]). A topological crystal X is called maximal abelian
if and only if G = H1(X0,Z).

Example 3.3. A square lattice X (Fig. 3.1 (a)) is a topological crystal whose base
graph X0 is the graph in Fig. 3.3 (a) (the 2-bouquet graph). Since the covering
transformation group G is G = H1(X0,Z) and rankG = rankH1(X0,Z) = 2, the
topological crystal X is 2-dimensional and maximal abelian.

Example 3.4. A triangular lattice X (Fig. 3.1 (b)) is a topological crystal whose
base graph X0 is the graph in Fig. 2.2 (b). Since the covering transformation
group G satisfies rankG = 2 but H1(X0,Z) = 3, the topological crystal X is
2-dimensional and not maximal abelian.

Example 3.5. A hexagonal lattice X (Fig. 3.1 (c)) is a topological crystal whose
base graph X0 is the graph in Fig. 2.2 (c). Since the covering transformation
group G is G = H1(X0,Z) and rankG = rankH1(X0,Z) = 2, the topological
crystal X is 2-dimensional and maximal abelian.

Example 3.6. A kagome lattice X (Fig. 3.1 (d)) is a topological crystal whose
base graph X0 is the graph in Fig. 2.2 (d). Since the covering transformation
group G satisfies rankG = 2 but H1(X0,Z) = 4, the topological crystal X is
2-dimensional and not maximal abelian.

Example 3.7. A diamond lattice X (Fig. 3.19) is a topological crystal whose base
graph X0 is the graph in Fig. 2.2 (b) (the 3-bouquet graph). Since the covering
transformation group G is G = H1(X0,Z) and rankG = rankH1(X0,Z) = 3, the
topological crystal X is 3-dimensional and maximal abelian.

Definition 3.8 (Sunada [39]). Given d-dimensional topological crystal X =

(V,E), a piecewise linear map Φ: X −→ Rd is called a realization of X. More
precisely, first we define Φ: V −→ Rd, and define Φ(e) by linear interpolation
between Φ(o(e)) and Φ(t(e)).

Definition 3.9 (Sunada [39]). A realization Φ of a d-dimensional topological
crystal X is called a periodic realization, if there exists an injective homomorphism
ρ : G −→ Rd satisfying

Φ(gv) = Φ(v) + ρ(g), (v ∈ V, g ∈ G).

Example 3.10. Three realizations in Fig. 3.2 are periodic realizations of a hexag-
onal lattice. These are different periodic realizations of the same graph. The
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(a) (b)

(c) (d)

Figure 3.1: Standard realizations of representative 2-dimensional topological
crystals. (a) A square lattice, (b) a triangular lattice, (c) a hexagonal lattice, and
(d) a kagome lattice. Blue vectors are basis of parallel translations.

realization (b) is the most symmetric, and the main problem of this section is to
explain the reason why nature selects (b) by mathematics.

(a) (b) (c)

Figure 3.2: Different realizations of the hexagonal lattice. These three lattices
have the same topological structure.

Definition 3.11 (Sunada [39]). Let X be a d-dimensional topological crystal
with the base graph X0 = (V0, E0), G be an abelian group acting on X, and Φ or
(Φ, ρ) be a periodic realization of X, where ρ : G −→ GL(d,R). The energy and
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the normalized energy of Φ are defined by

(3.1) E(Φ) =
∑︂
e∈E0

|Φ(t(e))− Φ(o(e))|2,

and

(3.2) E(Φ, ρ) = Vol(Γ)2/d
∑︂
e∈E0

|Φ(t(e))− Φ(o(e))|2, Γ = ρ(G),

respectively.

The energy of Φ is a discrete analogue of the Dirichlet energy for smooth
maps, since Φ(t(e))− Φ(o(e)) is a discretization of differential of smooth maps.

Definition 3.12 (Sunada [39]). For a topological crystal X with fixed lattice
Γ = ρ(G), a critical point Φ of the energy E is called a harmonic realization of
X.

In the followings, we abbreviate v = Φ(v) and e = Φ(e) for v ∈ V and e ∈ E,
as long as there are no misunderstandings.

Proposition 3.13 (Sunada [39]). For a topological crystal X, a realization Φ is
harmonic if and only if

(3.3)
∑︂

(u,v)∈(E0)v

(u− v) = 0, for all v ∈ V0.

That is to say, the sum of vectors creating edges emanating from each v is
zero, in other words, each vertex of V satisfies the “balancing condition”.

Proof. First, we note that we have E(Φ) = E(Φ, ρ) by fixing Γ with Vol(Γ) = 1.
Let Φt : X −→ Rd be a variation of Φ with Φ0 = Φ. Differentiating E(Φt) by t
and using the “integration by parts”, we may calculate as

d

dt
E(Φt) =

∑︂
v∈V0

∑︂
u∈Vv

⟨︁
v(t)− u(t),v′(t)− u′(t)

⟩︁
= 2

∑︂
v∈V0

∑︂
u∈Vv

⟨︁
v(t)− u(t),u′(t)

⟩︁
,
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where v(t) = Φt(v) and v′(t) = d
dtΦt(v). Therefore, we obtain

d

dt
E(Φt)

⃓⃓⃓⃓
t=0

= 2
∑︂
v∈V0

∑︂
u∈Vv

⟨v − u,xu⟩, xu = Φ′
t(u)

⃓⃓
t=0

,

and get the result.

Remark 3.14.

(1) In the Definition 3.12, if we do not assume that the lattice Γ is fixed, then
critical points admit Φ = 0.

(2) The equation (3.3) is equivalent to a linear equation

(3.4)
−deg(v)v +

∑︂
u∈(V0)v

u = 0, for all v ∈ V0,

∆XΦ = 0,

where ∆X = AX − diag(deg(v)) and is called the Laplacian of X.

For a smooth map u : Ω −→ R with u|∂Ω = 0, where Ω is a domain in
RN , the Dirichlet energy E of u is defined by E(u) = 1

2

∫︁
Ω
|∇u|2 dV, and its

Euler-Lagrange equation is ∆u = 0 (the Laplace equation). This is a reason
why the critical points of E for topological crystals are called harmonic.

Example 3.15. Realizations (b) and (c) of Fig. 3.2 are harmonic, since each vertex
v ∈ V0 satisfies the balance condition (3.4), but the realization (a) of Fig. 3.2
is not harmonic. Hence, the harmonic condition (3.3) or (3.4) are not suffice to
select (b) among three realizations in Fig. 3.2.

Proposition 3.16 (Sunada [39]). Harmonic realizations of X are unique up to
affine transformations.

Proof. First, note that the equation (3.3) is invariant under affine transformations.
Let {ei}di=1 be a Z-basis of the abelian group G, which acts on X. Assume Φ1(X)

and Φ2(X) are harmonic realizations of X with respect to lattice Γ1 = ρ1(L)

and Γ2 = ρ2(L), respectively. Then, there exists an A ∈ GL(d,R) such that
ρ1(g) = Aρ2(g) for g ∈ G. Hence, we obtain that there exists b ∈ Rd such that
Φ1 = AΦ2 + b.

Definition 3.17 (Sunada [39]). For a topological crystal X, standard realizations
of X are critical points among all realization Φ and Γ with Vol(Γ) = 1.
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A Standard realization are also called an equilibrium placement defined by
Delgado-Friedrichs–O’Keeffe [6].

Theorem 3.18 (Kotani–Sunada [22], Sunada [39]). For any topological crystals
X, there exists the unique standard realization up to Euclidean motions.

Kotani–Sunada proved Theorem 3.18 by using a theory of harmonic maps.
Eells–Sampson [9] proved the existence theorem of harmonic maps from compact
Riemannian manifolds into non-positively curved Riemannian manifolds. The
energy (3.1) is the Dirichlet energy of maps from 1-dimensional CW complex into
a Euclidean space. Hence, by Eells–Sampson’s theorem, there exists a standard
realization (an energy minimizing harmonic map) in each homotopy class. Sunada
also gave another proof of Theorem 3.18 in his lecture note [39]. On the other
hand, the existence of standard realizations can be also proved by showing the
strong convexity of the energy (3.1).

Theorem 3.19 (Sunada [37–39]). For a d-dimensional topological crystal X, a
realization Φ is standard if and only if∑︂

e∈E0

e = 0,(3.5)

∑︂
e∈E0

⟨x, e⟩e = cx for all x ∈ Rd and for some c > 0.(3.6)

Proof. First, we define T : Rd −→ Rd by Tx =
∑︂
e∈E0

⟨x, e⟩e. Since

(3.7) ⟨Tx,y⟩ =
∑︂
e∈E0

⟨x, e⟩⟨y, e⟩ = ⟨x, Ty⟩,

we obtain that T is symmetric. We would prove that Φ is a standard realization
if and only if there exists a positive constant c > 0 such that T = cI.

On the other hand, for any symmetric matrix T of size d with positive eigen-
values, there exists an orthogonal matrix P such that PTTP = diag(λ1, . . . , λd),
where λj > 0 are eigenvalues of T . The inequality of arithmetic and geometric
means implies

trT = trPTTP ≥ d(detPTTP )1/d = d(detT )1/d,

and the equality holds if and only if T = λId.
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Here, we write E0 = {eα}|E0|
α=1, and ei = (eα1, . . . , eαd) ∈ Rd. Since the

equation (3.6) is equivalent to

(3.8) ⟨Tx,y⟩ =
∑︂
e∈E0

⟨e,x⟩⟨e,y⟩ = c⟨x,y⟩,

taking an orthogonal basis {xj}dj=1 of Rd, and set x = xj , and y = xk, we obtain

(3.9)
|E0|∑︂
α=1

eαjeαk = cδjk,

and

(3.10) Vol(Γ)2/dE(Φ, ρ) =
∑︂
e∈E0

|e|2 =

|E0|∑︂
α=1

d∑︂
j=1

e2αj = cd.

Now, we assume that (Φ1, ρ1) is a standard realization of X and (Φ2, ρ2) is
a harmonic realization of X. By Proposition 3.16, there exists an A = (aij) ∈
GL(d,R) and b ∈ Rd such that Φ2 = AΦ1 + b and ρ1 = Aρ2. Then, we obtain

Vol(Γ1) = |detA|Vol(Γ2), fαi =

d∑︂
j=1

aijeαj ,

and

Vol(Γ2)
2/dE(Φ2, ρ2) =

d∑︂
i=1

|E0|∑︂
α=1

f2αi =

d∑︂
i=1

d∑︂
j,k=1

|E0|∑︂
α=1

aijaikeαjeαk

=

d∑︂
i=1

d∑︂
j,k=1

|E0|∑︂
α=1

aijaikδjk = c

d∑︂
i=1

d∑︂
j=1

aijaij = c trATA

≥ cd(detATA)1/d = cd(detA)2/d = cd(Vol(Γ2)/Vol(Γ1))
2/d

= cdVol(Γ2)E(Φ1, ρ1).

This implies that E(Φ2, ρ2) ≥ E(Φ1, ρ1) if and only if the equation (3.6) holds.

Theorem 3.20 (Sunada [37–39]). Assume that Φ is a standard realization of a
d-dimensional topological crystal. Then, each element σ ∈ Aut(X) extends as an
element of Aut(Φ(X)) ⊂ O(d)⋉Rd (Euclidean motion group of Rd).

96



3. TOPOLOGICAL CRYSTALS AND THEIR STANDARD REALIZATION

Theorem 3.20 means that standard realizations, which are obtained by a
variational principle, have maximum symmetry among all the realizations of a
topological crystal.

Recently, Kajigaya–Tanaka [14] study the existence of discrete harmonic maps
into Riemann surface of genus greater than one.

Example 3.21. The realization (b) of Fig. 3.2 is a standard realization of a hexag-
onal lattices, whereas, the realization (c) of Fig. 3.2 is not a standard.

Example 3.22. Let △ABC be a triangle on a plane and O be the barycenter of
the triangle, and consider a graph G = (V,E) consisting V = {O,A,B,C} and
E = {(O,A), (O,B), (O,C)}. By a property of the barycenter of triangles, we
obtain

−→
OA+

−−→
OB +

−−→
OC = 0. That is to say, the balancing condition (3.3) holds

for O ∈ V ; however, the condition (3.6) only holds for the case that △ABC is a
regular triangle.

Definition 3.23 (Sunada [37–39]). A topological crystal X of degree n is called
strongly isotropic, if there exists g ∈ Aut(X) such that g(u) = v and g(ei) = fσ(i),
for any u, v ∈ V , and for any permutation σ ∈ Sn, where Eu = {ei}ni=1 and
Ev = {fj}nj=1.

Theorem 3.24 (Sunada [37]). 2-dimensional strongly isotropic topological crys-
tals are hexagonal lattices only. 3-dimensional strongly isotropic topological crys-
tals are diamond lattices and K4 lattices (and their mirror image) only.

Remark 3.25. A square lattice does not have the strongly isotropic property. Let
X be a square lattice. Consider a vertex v ∈ V , g = id ∈ Aut(X), and let
e1, e2, e3, e4 ∈ Ev be edges to north, west, south, and east. If X has the strongly
isotropic property, then any σ ∈ S4, g(ei) = eσ(i) for i = 1, 2, 3, 4. However,
we exchange edges by the permutation σ(1, 2, 3, 4) = (2, 1, 3, 4), then, the graph
structure could not preserved. Hence, a square lattice is not strongly isotropic.

Graphenes and diamonds have nice physical properties (see Section 3.3), and
they are carbon structure of standard realizations of hexagonal and diamond
lattices, which are strongly isotropic. Hence, we may expect that K4-carbons are
also nice physical properties.

Remark 3.26. Kotani–Sunada considered topological crystals from probabilistic
motivations [18, 19, 21, 37]. A random walk on a graph X = (V,E) is a stochastic
process associated with p : E −→ [0, 1] satisfying

∑︁
e∈Ex

p(e) = 1. In the case of
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p(e) = 1/(|Ex|), the random walk is called simple random walk. The function
p is considered as transition probability from o(e) to t(e). Define pX(n, x, y) =∑︁
p(e1) · · · p(en), where summation over all paths with e = e1 · · · en, o(e1) = x,

t(en) = y ∈ V , is called n-step probability from x to y.

Let X be a d-dimensional topological crystal, Kotani–Sunada studied when
the simple random walk on X “converges” to a Brownian motion on Rd as the
mesh of X becomes finer, and proved that if a realization of X is standard, then
there exists constants C depending only on X such that

1

deg(y)
pX(n, x, y) ∼ C

(4πn)d/2

(︂
1 + c1(x, y)n

−1 +O(n−2)
)︂

as n→ ∞,

c1(x, y) = −C
4
|x− y|2 + g(x) + g(y) + c, for certain g and c,

which means that pX(n, x, y) “converges” to the heat kernel pRd(t,x,y) as n ↑ ∞.

3.2 Explicit constructions of standard realizations

In this section, we demonstrate how to construct a standard realization from
given base graph explicitly.

Let X0 = (V0, E0) be a finite graph with d = rankH1(X0,Z). We define a
natural inner product on d-dimensional vector space C1(X0,R) by

⟨e1, e2⟩ =

⎧⎪⎪⎨⎪⎪⎩
1 if e1 = e2,

− 1 if e1 = e2,

0 otherwise,

for e1, e2 ∈ E0. By using the inner product, we may identify C1(X0,R) to R|E0|,
hence we may also identify H1(X0,R) to Rd.

Let X = (V,E) be the maximum abelian covering of X0, and π : X −→ X0

be the covering map. Fix a vertex v0 ∈ V0, and define Φ: X −→ H1(X0,R) by

(3.11) Φ(v) = P (π(e1)) + · · ·+ P (π(en)),

where e = e1 · · · en is a path in X connecting v0 = o(e1) and v = t(en), and
P : C1(X0,R) −→ H1(X0,R) is the orthogonal projection.

98



3. TOPOLOGICAL CRYSTALS AND THEIR STANDARD REALIZATION

Proposition 3.27 (Sunada [39]). The map Φ: X −→ H1(X0,R) defined by
(3.11) is a harmonic realization of X, namely,

(3.12)
∑︂

e∈(E0)v

P (e) = 0 ∈ H1(X0,R).

Proof. First, we prove that

(3.13)
∑︂

e∈(E0)v

⟨e, c⟩ = 0

for an arbitrary closed path c = e1 · · · en in X0. If c does not contain an edge
whose origin or terminus is v, then the equation (3.13) obviously holds. Let ej and
ej+1 be edges in c satisfying t(ej) = o(ej+1) = v, then

⟨︁
e, ej + ej+1

⟩︁
= 1− 1 = 0.

Hence, we obtain (3.13).

The equality (3.13) implies that∑︂
e∈(E0)v

e ∈ H1(X0,R)⊥,

since H1(X0,R) is generated by closed paths in X0. Therefore, we obtain

0 = P

⎛⎝ ∑︂
e∈(E0)v

e

⎞⎠ =
∑︂

e∈(E0)v

P (e),

and hence we get (3.12).

Proposition 3.28 (Sunada [39]). The map Φ: X −→ H1(X0,R) defined by
(3.11) is a standard realization of X, namely, there exists a constant c > 0 such
that

(3.14)
∑︂
e∈E0

(︂⟨︁
P (e), x

⟩︁)︂2
= c|x|2, x ∈ H1(X0,R).

Proof. Since the set of oriented edges Eo
0 := {ei}ni=1 is an orthonormal basis of

C1(X0,R), we obtain∑︂
e∈Eo

0

(︂⟨︁
P (e), x

⟩︁)︂2
=
∑︂
e∈Eo

0

(︁
⟨e, x⟩

)︁2
= |x|2,
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and ∑︂
e∈E0

(︂⟨︁
P (e), x

⟩︁)︂2
=
∑︂
e∈Eo

0

(︂⟨︁
P (e), x

⟩︁)︂2
+
∑︂
e∈Eo

0

(︂⟨︁
P (e), x

⟩︁)︂2
= 2

∑︂
e∈Eo

0

(︂⟨︁
P (e), x

⟩︁)︂2
,

hence we get (3.14)

By the above arguments, the realization Φ of X0 is into H1(X0,R)/H1(X0,Z)
with the period lattice Γ. The torus H1(X0,R)/H1(X0,Z) is called an Albanese
torus. Therefore, to calculate explicit coordinates of standard realizations, we
should compute correspondences between the Albanese torus and Rd/Zd.

3.2.1 Explicit algorithm in cases of maximum abelian coverings

Now, we explain explicit algorithm to obtain a standard realization of a d-
dimensional topological crystal X, which is a maximum abelian covering of
X0 = (V0, E0). This method is followed by Sunada [39] and Naito [28]. In
the followings, set b = rankH1(X0,Z).

Step 1 First, compute a spanning tree X1 = (V0, E1) of X0 by Kruskal’s
algorithm, and set E0 \E1 = {ei}bi=1 and E1 = {ei}|E|

i=b+1. Then, we may select a
Z-basis {αi}bi=1 of H1(X0,Z) as follows. For each edge ei ∈ E0 \E1, we may find
a path pi in E1 such that o(pi) = t(ei) and t(pi) = o(ei). The path piei ∈ E0 is a
closed path in E0, and hence by Propositions 2.8 and 2.9, we may set αi = [piei].

Step 2 Since {αi}bi=1 is a Z-basis of H1(X0,Z), for each edge e ∈ E0 there
exists ai(e) ∈ R such that

(3.15) P (e) =

b∑︂
i=1

ai(e)αi ∈ H1(X0,R).

Since e ∈ C1(X0,R) and P is the orthogonal projection from C1(X0,R) onto
H1(X0,R). P (e) satisfies

(3.16)
⟨︁
P (e)− e, αj

⟩︁
= 0, for any j.
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Substituting (3.15) into (3.16), we obtain

(3.17)
b∑︂

i=1

ai(e)
⟨︁
αi, αj

⟩︁
=
⟨︁
e, αj

⟩︁
.

Set A = (
⟨︁
αi, αj

⟩︁
) ∈ GL(b,R), and a(e) = (ai(e))

T , b(e) = (⟨e, αi⟩)T ∈ Rb, then
(3.17) is written as

(3.18) a(e) = A−1b(e).

We get a(e) for each e ∈ E0, then we obtain the realization

(3.19) P (e) = e =

b∑︂
i=1

ai(e)αi, in H1(X0,R).

On the other hand, we easily calculate b(e) and A, since e and αi are given by
linear combinations of {ei}bi=1 and {ei}|E|

i=b=1. Therefore, by (3.18), we obtain
a(e). We remark that the matrix A is the Gram matrix of the basis {αi}bi=1.
Taking an orthonormal basis {xi}bi=1 of H1(X0,R) and write

(3.20) αi =

b∑︂
j=1

βijxj ,

then we obtain the expression of the realization in the Cartesian coordinates of
H1(X0,R) ≡ Rb as

(3.21) e =

b∑︂
i=1

ai(e)αi =

b∑︂
i=1

⎛⎝ b∑︂
j=1

ai(e)βij

⎞⎠xj for e ∈ E0.

To obtain the relation (3.20), we may use the Cholesky decomposition. The
Cholesky decomposition, which is a special case of LU decomposition, gives us
the decomposition A = XTX for any positive definite symmetric matrix A by an
upper triangular matrix X (see for example [35]).

Step 3 Fix a vertex v0 ∈ V0, and set v0 = 0 (origin of Rb). For each vertex
vj ∈ V0, we find the shortest path e = ej1 · · · ejk ∈ E1 with o(ej1) = v0 and
t(ejk) = vj , which is a shortest path in the spanning tree finding in Step 1
connecting v0 and vj . By using (3.19), we obtain

(3.22) vj =

k∑︂
i=1

eji =

k∑︂
i=1

b∑︂
k=1

ak(eji)αk.
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In the above, we realize edges in the spanning tree. Hence, to complete calculation,
we compute realizations of edges which are not contained in the spanning tree.
For each eℓ ∈ E0 \ E1, we define wℓ ∈ Rb by

(3.23) wℓ = v(eℓ) + eℓ,

where v(eℓ) = o(eℓ).

Vertices {vj}|V |
j=1 ⊔ {wℓ}bℓ=1 ⊂ Rb (or edges {ei}|E0|

i=1 ) with the period lattice
{αi}bi=1 give us a standard realization of X with period lattice Γ. The set
of realizations of edges {ej}|E|

j=1 is called the building block. In other words,
Information of adjacency of the graph and the building block give us a standard
realization.

Remark 3.29. Dijkstra’s algorithm gives us shortest paths from a vertex to any
other vertices within O(|E|+ |V | log |V |) (see for example [1]).

Example 3.30 (Square lattices in R2, Fig. 3.1 (a), Sunada [39, Section 8.3]).
The base graph X0 = (V0, E0) of square lattices in R2 is the 2-bouquet graph
(Fig. 3.3 (a)), and rankH1(X0,R) = 2. Write V0 = {v0} and E0 = {e1, e2}, as
in Fig. 3.3 (a), then a spanning tree of X0 is X1 = (V0, {∅}), namely, E1 = {∅}.
Hence, we may take α1 = e1 and α2 = e2 as a Z-basis of H1(X0,Z), and obtain

A =

[︄
⟨α1, α1⟩ ⟨α1, α2⟩
⟨α2, α1⟩ ⟨α2, α2⟩

]︄
=

[︄
1 0

0 1

]︄
, A−1 = A,

[︂
b(e1) b(e2)

]︂
=

[︄
⟨e1, α1⟩ ⟨e2, α1⟩
⟨e1, α2⟩ ⟨e2, α2⟩

]︄
=

[︄
1 0

0 1

]︄
,

[︂
a(e1) a(e2)

]︂
= A

[︂
b(e1) b(e2)

]︂
=

[︄
1 0

0 1

]︄
.

On the other hand, the shortest paths from v0 to other vertices are

spath(v0,wi) = (v0wi), i = 1, 2.

Since {αi}2i=1 is orthonormal, hence, we obtain

v0 =

[︄
0

0

]︄
, w1 = v0 + a(e1) =

[︄
1

0

]︄
, w2 = v0 + a(e2) =

[︄
0

1

]︄
,

and the period lattice is [︂
x1 x2

]︂
=

[︄
1 0

0 1

]︄
.
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The above datas allows us to write figure in Fig. 3.1 (a).

Example 3.31 (Hyper-cubic lattice in Rn, Sunada [39, Section 8.3]). A gen-
eralization of Example 3.30 is hyper-cubic lattices in Rn. In case of n = 3, it is
called cubic lattices. The base graph X0 = (V0, E0) of hyper-cubic lattices is the
n-bouquet graph (Fig. 3.3 (b)), namely V0 = {v}, E0 = {ei}ni=1, as in Fig. 3.3
(b). Since a spanning tree of X0 is X1 = (V0, {∅}), we may take an orthonormal
Z-basis of H1(X0,Z) by {αi}ni=1, where αi = ei. By similar calculations, we
obtain

A = A−1 =
[︂
a(ei)

]︂
=
[︂
b(ei)

]︂
= En (the identity matrix of size n).

Hence, we obtain

v0 = 0, wi = xi (standard i-th unit vector of Rn) i = 1, . . . , n,

and the period lattice is
[︂
xi

]︂
= En. A standard realization of hyper-cubic lattices

is an orthonormal lattice in Rn.

(a) (b)

v0

e1

e2

v0

e1

e2 e3

Figure 3.3: (a) The 2-bouquet graph, which is the base graph of square lattices,
(b) the 3-bouquet graph, which is the base graph of cubic lattices.

Example 3.32 (Hexagonal lattices, Fig. 3.1 (c), Sunada [39, Section 8.3]). The
base graph X0 = (V0, E0) of hexagonal lattices in R2 is the graph with two vertices
and three edges connecting both vertices (Fig. 3.4 (a)), and rankH1(X0,R) = 2.
Write V0 = {v0, v1} and E0 = {e1, e2, e3} as in Fig. 3.4, then a spanning tree of
X0 is X1 = (V0, {e3}). Hence, we may take α1 = e1 − e3 and α2 = e2 − e3 as a

103



3. TOPOLOGICAL CRYSTALS AND THEIR STANDARD REALIZATION

Z-basis of H1(X0,Z), and obtain

A =

[︄
2 1

1 2

]︄
, A−1 =

1

3

[︄
2 −1

−1 2

]︄
[︂
b(e1) b(e2) b(e3)

]︂
=

[︄
1 0 −1

0 1 −1

]︄
,

[︂
a(e1) a(e2) a(e3)

]︂
=

1

3

[︄
2 −1 −1

−1 2 −1

]︄
.

The shortest paths from v0 to other vertices are

spath(v0,wi) = (v0wi) i = 1, 2.

Since {αi}2i=1 is not orthonormal, we choice the basis as[︄
α1

α2

]︄
=

[︄ √
2 0

1/
√
2
√︁

3/2

]︄
=: X,

then we obtain
v0 = 0,

w1 =
2

3
α1 −

1

3
α2 =

[︄
1/
√
2

−1/
√
6

]︄
,

w2 = −1

3
α1 +

2

3
α2 =

[︄
0√︁
2/3

]︄
,

w3 = −1

3
α1 −

1

3
α2 =

[︄
−1/

√
2

−1/
√
6

]︄
,

and the period lattice is [︂
x1 x2

]︂
= X.

Note that
⟨︁
wi,wj

⟩︁
= (−1/2)|wi| |wj | (i ̸= j) are satisfied. The above datas allow

us to write figure in Fig. 3.1 (c).

Example 3.33 (Diamond lattices, Sunada [39, Section 8.3]). The base graph
X0 = (V0, E0) of a diamond lattices in R3 is the graph with two vertices and four
edges connecting both vertices, and rankH1(X0,R) = 3 (see Fig. 3.18). Write
V0 = {v0, v1} and E0 = {e1, e2, e3, e4}, where ei = (v0, v1), then a spanning tree
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(a) (b)
v0

v1

e1 e2e3

v0

v1

e1e2e3e4

Figure 3.4: (a) The base graph of hexagonal lattices, (b) the base graph of
diamond lattices. Thick edges consist a spanning tree of them.

of X0 is X1 = (V0, {e4}). Hence, we may take αi = ei − e4 (i = 1, 2, 3) as a
Z-basis of H1(X0,Z), and obtain

A =

⎡⎢⎣2 1 1

1 2 1

1 1 2

⎤⎥⎦ , A−1 =
1

4

⎡⎢⎣ 3 −1 −1

−1 3 −1

−1 −1 3

⎤⎥⎦
[︂
b(e1) b(e2) b(e3) b(e4)

]︂
=

⎡⎢⎣1 0 0 −1

0 1 0 −1

0 0 1 −1

⎤⎥⎦ ,
[︂
a(e1) a(e2) a(e3) a(e4)

]︂
=

1

4

⎡⎢⎣ 3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

⎤⎥⎦ ,
⎡⎢⎣α1

α2

α3

⎤⎥⎦ =

⎡⎢⎣
√
2 0 0

1/
√
2
√︁

3/2 0

1/
√
2 1/

√
6 2/

√
3

⎤⎥⎦ =: X.

The shortest paths from v0 to other vertices are

spath(v0,wi) = (v0wi) i = 1, 2, 3.
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Hence, we obtain

v0 = 0,

w1 =
3

4
α1 −

1

4
α2 −

1

4
α3 =

⎡⎢⎣ 1/
√
2

−1/
√
6

−1/(2
√
3)

⎤⎥⎦ ,
w2 = −1

4
α1 +

3

4
α2 −

1

4
α3 =

⎡⎢⎣ 0√︁
2/3

−1/(2
√
3)

⎤⎥⎦ ,
w3 = −1

4
α1 −

1

4
α2 +

3

4
α3 =

⎡⎢⎣ 0

0

2/
√
3

⎤⎥⎦ ,
w4 = −1

4
α1 −

1

4
α2 −

1

4
α3 =

⎡⎢⎣ −1/
√
2

−1/
√
6

−1/(2
√
3)

⎤⎥⎦ .

The period lattice is

[︂
x1 x2 x3

]︂
= X.

Note that
⟨︁
wi,wj

⟩︁
= (−1/3)|wi| |wj | (i ̸= j) are satisfied.

Example 3.34 (Gyroid lattices (K4 lattices), Sunada [39, Section 8.3]). The
base graph X0 = (V0, E0) of a gyroid lattices in R3 is the K4 graph, which is the
complete graph of four vertices, and rankH1(X0,R) = 3. Write V0 = {vi}4i=1 and
E0 = {ei}4i=1 as in Fig. 3.5 (a), and take a spanning tree X1 of X0 as in Fig. 3.5
(b). Hence, we may take

α1 = e1 + e4 − e2, α2 = e2 + e5 − e3, α3 = e3 + e6 − e1
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as a Z-basis of H1(X0,Z), and obtain

A =

⎡⎢⎣ 3 −1 −1

−1 3 −1

−1 −1 3

⎤⎥⎦ , A−1 =
1

4

⎡⎢⎣2 1 1

1 2 1

1 1 2

⎤⎥⎦
b =

⎡⎢⎣ 1 −1 0 1 0 0

0 1 −1 0 1 0

−1 0 1 0 0 1

⎤⎥⎦ , a =
1

4

⎡⎢⎣ 1 −1 0 2 1 1

0 1 −1 1 2 1

−1 0 1 1 1 2

⎤⎥⎦ ,
⎡⎢⎣α1

α2

α3

⎤⎥⎦ =

⎡⎢⎣
√
3 0 0

−1/
√
3 2

√︁
2/3 0

−1/
√
3 −

√︁
2/3

√
2

⎤⎥⎦ =: X,

Let {wi}3i=1 be as in Fig. 3.5 (b), then the shortest paths from v0 to other vertices
are

spath(v0,vi) = (v0vi), spath(v0,wi) = (v0vi)(viwi), i = 1, 2, 3.

Hence, we obtain

v0 = 0,

v1 = 1
4α1 − 1

4α3 =

[︄
1/

√
3

1/(2
√
6)

−1/(2
√
2)

]︄
, w1 = v1 +

1
2α1 +

1
4α2 +

1
4α3 =

[︃
2/

√
3

1/
√
6

0

]︃

v2 = 1
4α2 − 1

4α1 =

[︃
−1/

√
3

1/
√
6

0

]︃
, w2 = v2 +

1
4α1 +

1
2α2 +

1
4α3 =

[︄
−1/

√
3

5/(2
√
6)

1/(2
√
2)

]︄

v3 = 1
4α3 − 1

4α2 =

[︃
0

−
√
3/(2

√
2)

1/(2
√
2)

]︃
, w3 = v3 +

1
4α1 +

1
4α2 +

1
2α3 =

[︃
0

−
√
3/(2

√
2)

3/(2
√
2)

]︃
.

A gyroid lattice is called a K4 lattice since its base graph is K4. It is also called a
Laves’ graph of girth ten, a (10, 3)-a network, and a diamond twin. The minimum
length of closed path (without backtracking paths) is called the girth of the graph.
The girth of a gyroid lattice is 10 (see Fig. 3.8), and hence, it is called (10, 3)-a
network.

Remark 3.35. We can also take coordinates which all vertices have rational num-
bers. Taking ⎡⎢⎣α1

α2

α3

⎤⎥⎦ =

⎡⎢⎣−1 1 −1

−1 −1 1

1 −1 −1

⎤⎥⎦ ,
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then

v1 =
1

2

⎡⎢⎣ 0

−1

1

⎤⎥⎦ , v2 =
1

2

⎡⎢⎣ 1

0

−1

⎤⎥⎦ , v3 =

⎡⎢⎣−1

1

0

⎤⎥⎦ ,
w1 =

1

2

⎡⎢⎣−1

−2

1

⎤⎥⎦ , w2 =

⎡⎢⎣ 1

−1

−2

⎤⎥⎦ , w3 =

⎡⎢⎣−2

1

−1

⎤⎥⎦ .

(a) (b)

v0

v1

v2 v3

e1

e2

e3

e4

e5

e6

v0

v1

v2 v3

w3

w2

w1

e1

e2

e3

e5

e4

e6

Figure 3.5: (a) The base graph of gyroid (K4) lattices, thick edges consist
a spanning tree of them. (b) building block (in the abstract graph) of gyroid
lattices.

Remark 3.36. Let Φ(X) be a standard realization of diamond or cubic lattices,
and C ∈ O(3)\SO(3). Then, C(Φ(X)) and Φ(X) are mutually congruent, namely,
Φ(X) and its mirror image are mutually congruent in R3. This property is called
chiral symmetry. On the other hand, a standard realization of K4 lattices is not
chiral symmetric. Taking a C ∈ O(3) \ SO(3), X ′ = XC and constructing the
realization as in Example 3.34, then we obtain a chiral image of Φ(X).

3.2.2 Explicit algorithm for generic cases

In general, a standard realization of d-dimensional topological crystal X is not
maximal abelian covering of a base graph X0. In this section, we assume that
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(a) (b)

Figure 3.6: (a) A building block of a gyroid lattice (K4 lattice) viewed from a
perpendicular direction of the plane consisted by v1, v2, and v3, (b) one viewed
from a parallel direction of it.

(a) (b)

Figure 3.7: A gyroid (K4) lattice from (a) (0, 0, 1)-direction and (b) (1, 1, 1)-
direction by using coordinates in Remark 3.35. The blue, red, and green vectors
are α1, α2, and α3, respectively. In (b), α1 is the vector perpendicular to the
paper from the back to the front.
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Figure 3.8: Fifteen 10-members rings pass through a vertex in a gyroid lattice.
Each ring is mutually congruent.

d < b = rankH1(X0,Z), and explain explicit algorithm to obtain a standard
realization of X. This method is followed by Sunada [39].

Since d < b, the standard realization is constructed in a d-dimensional subspace
V of H1(X0,R), whose orthogonal subspace H is called the vanishing subspace,
namely, H1(X0,R) = V ⊕H, and V = H⊥ with dimH = b− d.

Step 1 By using the method of Step 1 in Section 3.2.1, find a Z-basis {αi}bi=1

of H1(X0,Z), such that {αi}bi=d+1 is a basis of the vanishing subspace H, using
a linear transformation if necessary.

Step 2 Compute A, b(e), and a(e) as in Step 2 of Section 3.2.1, then we obtain
a standard realization of a topological crystal ˜︁X, which is a maximal abelian
covering of the base graph X0. This realization Φmax is in H1(X0,R) ∼= Rb.

Step 3 Let p : H1(X0,R) −→ H be the orthogonal projection, then {βi}di=1 is a
Z-basis of the period lattice, where βi = p(αi). We should obtain B = (

⟨︁
βi, βj

⟩︁
) ∈

GL(d,R) to calculate standard realizations of X. Since γi −αi = p(αi)−αi ∈ H,
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we may write

p(αi) = αi +

d∑︂
j=b+1

dijαj

and
⟨︁
p(αi), αk

⟩︁
= 0 for k = b+ 1, . . . , d, and hence we obtain

(3.24) ⟨αi, αk⟩ = −
d∑︂

j=b+1

dij
⟨︁
αj , αk

⟩︁
, k = b+ 1, . . . , d, i = 1, . . . , b.

Write A =

[︄
A11 A12

A21 A22

]︄
, where A11 is d×d matrix, A22 is (b−d)× (b−d) matrix,

AT
12 = A21, and D = (dij), then (3.24) implies

(3.25) A12 = −DA22.

Therefore, we obtain

(3.26)

⟨︁
βi, βj

⟩︁
=
⟨︁
p(αi), p(αj)

⟩︁
=
⟨︂
pT p(αi), αj

⟩︂
=
⟨︁
p(αi), αj

⟩︁
=

⟨︄
αi +

d∑︂
k=b+1

dikαk, αj

⟩︄
=
⟨︁
αi, αj

⟩︁
+

d∑︂
k=b+1

dik
⟨︁
αk, αj

⟩︁
,

and thus, by (3.26), we obtain

(3.27) B = A11 +DA21 = A11 −A12A
−1
22 A21.

Since realizations of an edge e ∈ E0 of the maximal abelian covering of X0

is written as emax =
∑︁b

i=1 a(e)αi, combining P : C1(X0,R) −→ H1(X0,R) and
p : H1(X0,R) −→ H, we obtain

(3.28) p(P (e)) = p(emax) = e =

d∑︂
i=1

a(e)βi.

Example 3.37 (Triangular lattice, Fig. 3.1 (b), Sunada [39, Section 8.3]). A
triangular lattice is the projection of a cubic lattice in R3 onto a suitable 2-
dimensional plane. Hence, d = 2 and b = rankH1(X0,R) = 3, and the base graph
X0 = (V0, E0) of triangular lattices is the one of cubic lattices, i. e., X0 is the
3-bouquet graph (3.3). Using notation in Example 3.31, take α1 = e1, α2 = e2,
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α3 = e1 + e2 + e3, and H = span{α1, α2}, then we obtain

(3.29) A =

⎡⎢⎣1 0 1

0 1 1

1 1 3

⎤⎥⎦ , b(e) =

⎡⎢⎣1 0 0

0 1 0

1 1 1

⎤⎥⎦ , a(e) =

⎡⎢⎣1 0 −1

0 1 −1

0 0 1

⎤⎥⎦ ,
and

(3.30) emax
1 = α1, emax

2 = α2, emax
3 = −α1 − α2 + α3.

By (3.28) and (3.30), we obtain

(3.31) e1 = β1, e2 = β2, e3 = −β1 − β2,

and by (3.27) and (3.29), we also obtain

B =
[︂⟨︁
βi, βj

⟩︁]︂
=

[︄
1 0

0 1

]︄
− 1

3

[︄
1

1

]︄ [︂
1 1

]︂
=

[︄
1 0

0 1

]︄
− 1

3

[︄
1 1

1 1

]︄
=

1

3

[︄
2 −1

−1 2

]︄
.

On the other hand, the shortest paths from v0 to other vertices are

spath(v0,vi) = (v0vi) = ei i = 1, 2, 3.

By using the Cholesky decomposition, we may write[︄
β1
β2

]︄
=

[︄√︁
2/3 −1/

√
6

0 1/
√
2

]︄
,

and hence by (3.31), we obtain

e1 =

[︄√︁
2/3

0

]︄
, e2 =

[︄
−1/

√
6

1/
√
2

]︄
. e3 =

[︄
−1/

√
6

−1/
√
2

]︄
,

and

v0 =

[︄
0

0

]︄
, v1 = v0 + e1 =

[︄√︁
2/3

0

]︄
,

v2 = v0 + e2 =

[︄
−1/

√
6

1/
√
2

]︄
. v3 = v0 + e3 =

[︄
−1/

√
6

−1/
√
2

]︄
.

The above datas allow us to write figure in Fig. 3.1 (b) (see also Fig. 3.9).
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(a) (b)

Figure 3.9: Building block of the triangular lattice, and its translations by B =
{β1,β2}. (a) building block {b} of the triangular lattice, (b) the blue, red, and
magenta blocks are the block translated by β1, β2, and β1 + β2.

Example 3.38 (Kagome lattice, Fig. 3.1 (d), Sunada [39, Section 8.3]). A kagome
lattice is a standard realization in R2 whose base graph X0 shown in Fig. 3.11
(a). The graph X0 satisfies b = rankH1(X0,R) = 4, and we may select

α1 = e1 − e4, α2 = e2 − e5, α3 = e1 + e2 + e3, α4 = e4 + e5 + e6,

and H = span{e1 + e2 + e3, e4 + e5 + e6}. Then, we obtain
(3.32)

A =

⎡⎢⎢⎢⎢⎣
2 0 1 −1

0 2 1 −1

1 1 3 0

−1 −1 0 3

⎤⎥⎥⎥⎥⎦ ,

b(e) =

⎡⎢⎢⎢⎢⎣
1 0 0 −1 0 0

0 1 0 0 −1 0

1 1 1 0 0 0

0 0 0 1 1 1

⎤⎥⎥⎥⎥⎦ , a(e) =
1

6

⎡⎢⎢⎢⎢⎣
3 0 −3 −3 0 3

0 3 −3 0 −3 3

1 1 4 1 1 −2

1 1 −2 1 1 4

⎤⎥⎥⎥⎥⎦ ,

(3.33)

emax
1 = (1/6)(3α1 + α3 + α4),

emax
2 = (1/6)(3α2 + α3 + α4),

emax
3 = (1/6)(−3α1 − 3α2 + 4α3 − 2α4),

emax
4 = (1/6)(−3α1 + α3 + α4),

emax
5 = (1/6)(−3α2 + α3 + α4),

emax
6 = (1/6)(3α1 + 3α2 − 2α3 + 4α4),
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By (3.28) and (3.33), we obtain

(3.34)
e1 = (1/2)β1, e2 = (1/2)β2, e3 = −(1/2)(β1 + β2),

e4 = −(1/2)β1, e5 = −(1/2)β2, e6 = (1/2)(β1 + β2),

and by (3.27) and (3.34), we also obtain

B =
[︂⟨︁
βi, βj

⟩︁]︂
=

[︄
2 0

0 2

]︄
−
[︄
1 −1

1 −1

]︄[︄
1/3 0

0 1/3

]︄[︄
1 1

−1 −1

]︄
=

2

3

[︄
2 −1

−1 2

]︄
On the other hand, the shortest paths from v0 to other vertices are

spath(v0,vi) = (v0vi) = ei spath(v0,wi) = (v0wi) = ei+3 i = 1, 2, 3.

By using the Cholesky decomposition, we may write[︄
β1
β2

]︄
=

[︄
2/
√
3 −1/

√
3

0 1

]︄
,

and hence by (3.34), we obtain

e1 = −e4 =

[︄
1/
√
3

0

]︄
, e2 = −e5 =

[︄
−1/(2

√
3)

1/2

]︄
. e3 = −e6 =

[︄
1/(2

√
3)

1/2

]︄
,

and

v0 =

[︄
0

0

]︄
, v1 = v0 + e1 =

[︄
1/
√
3

0

]︄
, v2 = v0 + e2 =

[︄
−1/(2

√
3)

1/2

]︄
,

w1 = v0 + e4 =

[︄
−1/

√
3

0

]︄
, w2 = v0 + e5 =

[︄
1/(2

√
3)

−1/2

]︄
.

The above datas allow us to write figure in Fig. 3.1 (d) (see also Fig. 3.10).
Since △v0v1v2 and △v0w1w2 consist regular triangles, a standard realization of
kagome lattices is consisted by regular triangles sharing vertices each other.

Next, we consider higher dimensional analogues of kagome lattices. As men-
tioned in Example 3.38, a standard realization of a kagome lattice consists by
regular triangles sharing vertices each other. One of the 3-dimensional analogues
of kagome lattices is a hyper-kagome lattice of type II, whose standard realization
consists quadrilaterals sharing vertices each other. Since a triangles in R2 is a 1-
simplex, the other is a hyper-kagome lattice of type I, whose standard realization
consists 1-skeleton of 2-simplex sharing vertices each other.
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(a) (b)

Figure 3.10: Building block of the kagome lattice, and its translations by B =
{β1,β2}. (a) building block {b} of the kagome lattice, (b) the blue, red, and
magenta blocks are blocks translated by β1, β2, and β1 + β2.

Example 3.39 (3D kagome lattice of type I, Sunada [39, Section 8.3]). One
of the 3-dimensional analogues of kagome lattices is defined as follows. Let X0

be a graph in Fig. 3.11 (b), and and ˜︁X be its maximal abelian covering. Since
b = rankH1(X0,R) = 9, ˜︁X is 9-dimensional a topological crystal. Take a Z-basis
of H1(X0,R) as

α1 = e1 − e4, α2 = e2 − e5, α3 = e3 − e6,

α4 = e7 − e2 + e1, α5 = e8 − e3 + e2, α6 = e9 − e1 + e3,

α7 = e10 + e5 − e4, α8 = e11 + e6 − e5, α9 = e12 + e4 − e6,

and

H = span{α4, α5, α6, α7, α8, α9}.

The number of vertices in a building block in H1(X0,R) is 7, and the shortest
paths from v0 are

spath(v0,v1) = e1, spath(v0,v2) = e2, spath(v0,v3) = e3,

spath(v0,w1) = −e4, spath(v0,w2) = −e5, spath(v0,w3) = −e6.
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A building block are

e1 =

⎡⎢⎣1/20
0

⎤⎥⎦ , e2 =

⎡⎢⎣ 1/4√
3/4

0

⎤⎥⎦ , e3 =

⎡⎢⎣ 1/4

1/(4
√
3)

1/
√
6

⎤⎥⎦ ,
e4 =

⎡⎢⎣−1/2

0

0

⎤⎥⎦ , e5 =

⎡⎢⎣ −1/4

−
√
3/4

0

⎤⎥⎦ , e6 =

⎡⎢⎣ −1/4

−1/(4
√
3)

−1/
√
6

⎤⎥⎦ ,
e7 =

⎡⎢⎣−1/4√
3/4

0

⎤⎥⎦ , e8 =

⎡⎢⎣ 0

−1/(2
√
3)

1/
√
6

⎤⎥⎦ , e9 =

⎡⎢⎣ 1/4

−1/(4
√
3)

−1/
√
6

⎤⎥⎦ ,
e10 =

⎡⎢⎣−1/4√
3/4

0

⎤⎥⎦ , e11 =

⎡⎢⎣ 0

−1/(2
√
3)

1/
√
6

⎤⎥⎦ , e12 =

⎡⎢⎣ 1/4

−1/(4
√
3

−1/
√
6

⎤⎥⎦ ,
and ⎡⎢⎣β1β2

β3

⎤⎥⎦ =

⎡⎢⎣ 1 0 0

1/2
√
3/2 0

1/2 1/(2
√
3)

√︁
2/3

⎤⎥⎦ ,
then we obtain 3D kagome lattice of type I (Fig. 3.12). This lattice is sometimes
called as Pyrochlore lattice or simply hyper-kagome lattice.

Example 3.40 (3D kagome lattice of type II, Sunada [39, Section 8.3]). The
other 3-dimensional analogue of kagome lattices is defined as follows. Let X0

be a graph in Fig. 3.11 (c), and and ˜︁X be its maximal abelian covering. Since
b = rankH1(X0,R) = 5, ˜︁X is 5-dimensional a topological crystal. Take a Z-basis
of H1(X0,R) as

α1 = e1 − e4, α2 = e2 − e5, α3 = e3 − e6,

α4 = e1 + e2 + e3 + e4, α5 = e5 + e6 + e7 + e8,

and
H = span{e1 + e2 + e3 + e4, e5 + e6 + e7 + e8}.

The number of vertices in a building block in H1(X0,R) is 7, and the shortest
paths from v0 are

spath(v0,v1) = e1, spath(v0,v2) = e1 + e2, spath(v0,v3) = e1 + e2 + e3,

spath(v0,w1) = e5, spath(v0,w2) = e5 + e6, spath(v0,w3) = e5 + e6 + e7.
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A building block are

e1 =

⎡⎢⎣(1/2)
√︁
3/2

0

0

⎤⎥⎦ , e2 =

⎡⎢⎣−1/(2
√
6)

1/
√
3

0

⎤⎥⎦ , e3 =

⎡⎢⎣−1/(2
√
6)

−1/(2
√
3)

1/2

⎤⎥⎦ ,
e4 =

⎡⎢⎣−1/(2
√
6)

−1/(2
√
3

−1/2

⎤⎥⎦ , e5 =

⎡⎢⎣−(1/2)
√︁
3/2

0

0

⎤⎥⎦ , e6 =

⎡⎢⎣1/(2
√
6)

−1/
√
3

0

⎤⎥⎦ ,
e7 =

⎡⎢⎣1/(2
√
6)

1/(2
√
3)

−1/2

⎤⎥⎦ , e8 =

⎡⎢⎣1/(2
√
6)

1/(2
√
3)

1/2

⎤⎥⎦ ,
and ⎡⎢⎣β1β2

β3

⎤⎥⎦ =

⎡⎢⎣
√︁
3/2 −1/

√
6 −1/

√
6

0 2/
√
3 −1/

√
3

0 0 1

⎤⎥⎦ ,
then we obtain 3D kagome lattice of type II (Fig. 3.13).

(a) (b) (c)
v0

v1 v2

e1

e2

e3

e4

e5

e6

v1

v2 v3

e1e4
e2

e5e3

e6

e7

e8

e9

e10

e11

e12

v0

v0v1

v2 v3

e1

e2

e3

e4

e5

e6

e7

e8

Figure 3.11: (a) The base graph of kagome lattices, (b) the base graph of 3D
kagome lattices of type I, (c) the base graph of 3D kagome lattices of type II.

Example 3.41 (Cairo pentagonal tiling, Sunada [39, Section 8.3]). A periodic
tessellations is also considered as a topological crystal. A Cairo pentagonal tiling
(Fig. 3.14 (b)) is a tessellation by congruent pentagons, and it is topologically
equivalent to the basketweave tiling (Fig. 3.14 (a)). It is also called MacMahon’s
net [30]. Here, we compute a standard realization of the cairo pentagonal tiling.
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(a) (b) (c)

e1e4
e2

e5e3

e6

e7

e8

e9

e10

e11

e12

v0

v1

v2 v3

Figure 3.12: Building block of the 3D kagome lattice of type I, and its translations
by B = {β1,β2,β3}. (a) Each graph consisted by blue edges with vertices and
by red edges with vertices is a tetrahedral graph. (b) building block {b}, (c) the
blue, red, and magenta blocks are blocks translated by β1, β2, and β1 +β2. The
thin layer are translated by β3 of above them.

(a) (b)

Figure 3.13: Building block of the 3D kagome lattice of type II, and its translations
by B = {β1,β2,β3}. (a) building block {b}, (b) the blue, red, and magenta blocks
are blocks translated by β1, β2, and β1 + β2. The thin layer are translated by
β3 of above them.
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We number vertices and edges of the graph of a fundamental region of the
basketweave tiling as Fig. 3.14 (a). Taking a basis {p1,p2} of the period lattice,
then we obtain the equation of harmonic realizations (the equation of the balancing
condition) as
(3.35)
4v0 = v2 + (v9 − p2) + (v4 − p1) + (v11 − p1 − p2), 4v1 = v3 + v4 + (v9 − p2) + (v10 − p2),

3v2 = v0 + v3 + v6, 3v3 = v1 + v2 + v7,

3v4 = v1 + v5 + (v0 + p1), 3v5 = v7 + v4 + (v6 + p1),

4v6 = v2 + v8 + (v5 − p1) + (v11 − p1), 4v7 = v3 + v5 + v8 + v10,

3v8 = v6 + v7 + v9, 3v9 = v8 + v0 + p2 + v1 + p2,

3v10 = v7 + v1 + p2 + v11, 3v11 = v10 + v6 + p1 + v0 + p1 + p2.

For a given basis {p1,p2}, we obtain a solution of (3.35) (a harmonic realization
of the cairo pentagonal tiling) as
(3.36)

v0 = 0, v1 = (1/2)p1, v2 = (1/8)(p1 + 2p2),

v3 = (1/8)(3p1 + 2p2), v4 = (1/8)(6p1 + p2), v5 = (1/8)(6p1 + 3p2),

v6 = (1/2p2, v7 = (1/8)(4p1 + 4p2), v8 = (1/8)(2p1 + 5p2),

v9 = (1/8)(2p1 + 7p2), v10 = (1/8)(5p1 + 6p2), v11 = (1/8)(7p1 + 6p2).

A harmonic realization (3.36) is standard if and only if {ei}20i=1 satisfies (3.6).
Taking f1 = (1, 0)T and f2 = (0, 1)T , and solving

(3.37)
20∑︂
i=1

⟨︁
ei,fj

⟩︁
ei = cfj , j = 1, 2,

then we obtain

(3.38) |p1| = |p2|, ⟨p1,p2⟩ = 0.

Substituting (3.38) into (3.36), we obtain a standard realization of a Cairo pen-
tagonal tiling (Fig. 3.14 (b) and Fig. 3.15 (c)).

Remark 3.42. The carbon structure with regular hexagonal shaped is called a
graphene (see Section 3.3), and the carbon structure with a Cairo pentagonal
shaped is called a penta-graphene [43].
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(a) (b)

Figure 3.14: (a) A basketweave tiling, (b) a Cairo tiling. Both 1-skeletons of the
tiling are topologically equivalent.

Remark 3.43. A Cairo pentagonal tiling is constructed by line segments joining
four vertices of a square as in Fig. 3.16 (a) and (b). Define three kind of energies
L, E and C by

L(t) = |a−α|+ |b−α|+ |c− β|+ |d− β|+ |α− β| = 1− 2t+ 2
√︁
1 + 4t2,

E(t) = |a−α|2 + |b−α|2 + |c− β|2 + |d− β|2 + |α− β|2 = 8t2 − 4t+ 2,

C(t) = |a−α|−1 + |b−α|−1 + |c− β|−1 + |d− β|−1 + |α− β|−1.

For each t ∈ (−1/2, 1/2), the configuration in Fig. 3.16 (b) yields a monohedral
pentagon tiling. The energy L attains its minimum at t = 1/(2

√
3), and then the

angle θ = θ(t) in Fig. 3.16 (a) satisfies cos(θ) = −1/2, (θ = 2π/3). The minimum
of L gives us the configuration of the minimum length of line segments, On the
other hand, the energy E attains its minimum at t = 1/4, and then the angle θ
satisfies cos(θ) = −1/

√
5. The minimum of E gives us a standard realization of

the Cairo pentagonal tiling (see also Fig. 3.15 (c)). The energy C is based on the
Coulomb repulsive force, and attains its local minimum at t ∼ 0.17264, the angle
θ satisfies cos(θ) ∼ −0.326374.

Remark 3.44. This algorithm is easily programmable by using Kruskal’s and
Dijkstra’s algorithms, and the Cholesky decomposition. To calculate the matrix
A and vectors a(e), b(e), it is easy to set ei = (0, . . . , 1, . . . , 0) ∈ R|E|.

Example 3.45. By using Mathematica, coordinates of vertices of standard real-
izations of topological crystals are easy to compute, if we obtain a Z-basis of
H1(X0,Z) and a Z-basis of vanishing subspace H (and a spanning tree of X0).
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(a) (b)
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√
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√ 5/
2

√
5/2

1

√ 5/2

θ

θ

ϕ

Figure 3.15: (a) Numbering of vertices and edges of a fundamental region of
the basketweave tiling, (b) a fundamental region of a standard realization of the
Cairo tiling, (c) the congruent-pentagon of the standard realization. The ratio of
length of edges is 1 : (

√
5/2), and angles are cos(θ) = −1/

√
5 and cos(ϕ) = −3/5

(θ ∼ 116.57◦ and ϕ ∼ 126.87◦).

The following is a sample code of Mathematica to compute vertices of a kagome
lattice (lines 1 and 3 are specific datas of a kagome lattice).
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(a) (b)
1

1

t

1− t

1/20

θ

θ

a

b c

d

α

β

(c)

Figure 3.16: (a) Move α and β on the line x = 1/2, and calculate minimum of
L(t) and E(t), (b) a building block of the pentagonal tiling, (c) the red, blue, and
cyan pentagons are minimizers of L, E and C, respectively.

numberOfEdges=6;b=4;d=2;
e = IdentityMatrix[numberOfEdges];
alpha = {e[[1]]-e[[4]], e[[2]]-e[[5]], e[[1]]+e[[2]]+e[[3]],
e[[4]]+e[[5]]+e[[6]]};
matrixA = alpha.Transpose[alpha];
matrixb = Table[e[[j]].alpha[[i]], {i, 1, b}, {j, 1,
numberOfEdges}];
matrixa = Inverse[matrixA].matrixb;
matrixA11 = matrixA[[1;;d,1;;d]]; matrixA22 =
matrixA[[d+1;;b,d+1;;b]]; matrixA12 = matrixA[[1;;d,d+1;;b]];
matrixA21 = matrixA[[d+1;;b,1;;d]]; matrixB = matrixA11 -
matrixA12.Inverse[matrixA22].matrixA21;
matrixprojecta = matrixa[[1;;d]];
beta = CholeskyDecomposition[matrixB];
beta.matrixprojecta
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The output of this code is[︄
1/

√
3 −1/(2

√
3) −1/(2

√
3) −1/

√
3 1/(2

√
3) 1/(2

√
3)

0 1/2 −1/2 0 −1/2 1/2

]︄
,

which expresses coordinates of vertices of a kagome lattice. To obtain complete
datas of standard realizations, we should obtain datas of building blocks by using
datas of the shortest paths from an origin.

Remark 3.46. Crystallographers often call periodic realizations in R2 and R3 of
graphs 2-net and 3-net, respectively. Names of 2-net of each lattice are

sq1 the regular square lattice,
hcb the regular hexagonal lattice (honeycomb lattice)
hx1 the regular triangular lattice
kgm the regular kagome lattice,
mcm the 1-skeleton of Cairo pentagonal tiling,

and names of 3-net of each lattice are

pcu the regular cubic lattice,
dia the diamond lattice,
src the gyroid lattice,
crs the 3D kagome lattice of type I,
lvt the 3D kagome lattice of type II.

Lists of 2-net and 3-net are available in EPINET [2].

3.3 Carbon structures and standard realizations

In this section, we consider carbon crystal structures via standard realizations.

Graphene is an allotrope of carbons, and is 2-dimensional crystal structure.
Each carbon atom binds chemically other three carbon atoms by sp2-orbitals (see
Fig. 3.17). In mathematical view points, a graphene is a standard realization of
a regular hexagonal lattice. A fundamental piece (Fig. 3.17) is a graph with four
points, where each point locates at vertices of regular triangle and its barycenter.
Translating the fundamental piece by α1 and α2 with |αi| = 1 and ⟨α1,α2⟩ =
(1/2)|α1| |α2|, we obtain a structure of graphenes.
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(a) (b) (c) (d)

a1

a2

Figure 3.17: (a) The base graph of a regular hexagonal lattice, (b) a fundamental
piece of a regular hexagonal lattice, (c) a graphene structure, which is constructed
by (b) and its translations, (d) the barycenter of the blue regular triangle is a
vertex of the red regular triangle. The blue triangle is consisted by w1, w2, and
w3 (by using notations in Example 3.32), then the red is consisted by v0, v0+α1,
and v0 +α1 −α2. The barycenters of blue and red are v0 and w1, respectively.

Diamond is also an allotrope of carbons, and is 3-dimensional crystal structure.
Each carbon atom binds chemically other four carbon atoms by sp3-orbitals (see
Fig. 3.18). In mathematical view points, a diamond is a standard realization of
a graph, which can be called regular tetrahedral graph. A fundamental piece
(Fig. 3.18) is a graph with five points, each points located at vertices of regular
tetrahedron and its barycenter. Translating the fundamental piece by α1, α2,
and α3 with |αi| = 1 and

⟨︁
αi,αj

⟩︁
= (1/3)|αi| |αj | if i ̸= j, we obtain a structure

of diamonds.

By a textbook of physical chemistry, the space group of diamond structure
is Fd3m, which expresses face-centric structure with a glide reflection, three
improper rotations, and certain reflections. Diamond structures are constructed
shown in Fig. 3.19; however it is difficult to realize for mathematicians. On the
other hand, the construction diamond structures by standard realizations is easy
for mathematicians.

K4 structures are obtained by standard realizations of the K4 graph. The K4

graph is the complete graph with four vertices (each vertex connects to all other
vertices). Each carbon atom of K4 structures binds chemically other three atoms
by sp2-orbitals (see Fig. 3.20). A fundamental piece is a graph with seven points.
Translation vectors {αi}3i=1 satisfy |αi| = 1 and

⟨︁
αi,αj

⟩︁
= −(1/3)|αi| |αj |

(i ≠ j). Moreover, K4 structures have chirality, that is, A K4 structure and its
mirror image are not same.
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(a) (b) (c) (d)

Figure 3.18: (a) The base graph of a diamond structure, (b) a fundamental
piece of a diamond structure, whose vertices are located at vertices of a regular
tetrahedron and its barycenter, (c) a diamond structure. A diamond structure
is constructed by (b) and its translations. (d) the barycenter of the blue regular
tetrahedron is a vertex of the red regular tetrahedron. The blue tetrahedron is
consisted by v1, v2, v3, and v4 (by using notations in Example 3.33), then the
red is consisted by v0, w1 − w2 = v0 + α1 − α2, w1 − w3 = v0 + α1 − α3,
and v0 +w1 −w4 = v0 + α1. The barycenters of blue and red are v0 and w1,
respectively.

(a) (b) (c)

Figure 3.19: How to construct a diamond structure: (a) prepare a face-centric
structure, (b) duplicate it and translate to a diagonal direction, and then (c) we
obtain a diamond structure.

125
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Physical property of the K4 carbon is computed in the work [13] by Itoh–
Kotani–Naito–Sunada–Kawazoe–Adschiri, it is physically meta-stable and metal-
lic; however it has not composed yet. Recently, Mizuno–Shuku–Matsushita–
Tsuchiizu–Hara–Wada–Shimizu–Awaga compose a K4 structure other than car-
bons [27]. Their structure is a molecular-K4, a radical molecule NDI-△(−) con-
sists a K4 crystal.

Figure 3.20: A K4 structure, this is the image of the cover page of Notices
Amer. Math. Soc., 55, drawn by the author.

4 Negatively curved carbon structures

4.1 Carbon structures as discrete surfaces

In 1990’s, several new sp2-carbon structures, fullerenes (including C60), graphene,
and carbon nanotubes were found (See Fig. 4.1). These structures look like
surfaces in R3. For example, a graphene, C60, and a nanotube are similar to
a plane, a sphere, and a cylinder, respectively. Each continuous surface in the
above has non-negatively curved, i. e., the Gauss curvature of a sphere is positive,
and theses of a cylinder and plane are zero. Hence, it is a natural question if an
sp2-carbon structure which looks like a negatively curved surface exists or not.

In the followings, we consider sp2-carbon structures as “trivalent discrete
surface” (realizations of 3-regular graphs in R3). Moreover, we assume that
graphs are oriented surface graphs, that is, each graphs is realized on a oriented
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(a) (b) (c)

Figure 4.1: (a) Graphene, (b) (single wall) carbon nanotube, (c) C60 (an example
of fullerenes).

surface without self-intersections. By the property of surface graphs, we can
define the notion of “faces” (simple closed path) for trivalent discrete surfaces.

Definition 4.1. For an oriented surface graph X = (V,E), the Euler number
χ(X) of X is defined by

(4.1) χ(X) = |F | − |E|+ |V |,

where |F | is the number of faces of X.

Note that the Euler number χ(X) of an oriented graph X is same as the Euler
number of the underlying surface.

Proposition 4.2. Assume an oriented surface graph X = (V,E) is trivalent (3-
regular) graph, then we obtain F =

∑︁
Nk, E = (1/2)

∑︁
kNk, V = (1/3)

∑︁
kNk,

where Nk is the number of k-gon in X. Hence, we also obtain

(4.2) χ(X) =
∑︂

(1− k/6)Nk.

Proof. Since X is an oriented surface graph, each edges shared by two faces, and
hence, we obtain |E| = (1/2)

∑︁
kNk. Since X is trivalent, each vertex shared

by three faces, and hence, we obtain |V | = (1/3)
∑︁
kNk. Substituting them into

(4.1), we obtain (4.2).

Remark 4.3. By Proposition 4.2, the number of hexagons does not affect to the
Euler number. If X is positively curved (χ(X) > 0), then at least one n-gon
(n ≤ 5) should be contained in X. If X is negatively curved (χ(X) < 0), then at
least one n-gon (n ≥ 7) should be contained in X.
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N5 N6 N7 N8 |V | |E| |F | χ

C60 12 20 0 0 60 90 32 2
SWNT c = (6, 6) 0 12 0 0 24 36 12 0
Mackay–Terrones’ 0 90 0 12 192 288 102 −4

Table 4.1: Number of polygons of C60, a single-wall nanotube (of fundamental
region of it), where c is the chiral index of SWNT (see Section A.3), and Mackay–
Terrones’ structure (see Fig. 4.2 (b)).

By Proposition 4.2, if there exists an sp2-carbon structure with χ(X) < 0

(negatively curved), then at least one n-gon (n ≥ 7) exists in X. In 1991, Mackay–
Terrones [25] calculated an sp2-carbon structure which is looked like a minimal
surface (Schwarz P surface, χ(X) = −4), which contains 12 of octagons (see also
Lenosky–Gonze–Teter–Elser [24]).

(a) (b)

Figure 4.2: (a) Schwarz P surface, which is a triply periodic minimal surface (the
Gauss curvature K < 0, the Euler number χ = −4, and the genus g = −3), whose
period lattice {ei}3i=1 satisfies

⟨︁
ei, ej

⟩︁
= δij . (b) Mackay–Terrones’ structure, the

period lattice is the same as (a). Note that green faces in (b) are octagons (see
also Table 4.1).

4.2 Construction of negatively curved carbon structures via
standard realizations

Tagami–Liang–Naito–Kawazoe–Kotani [40] constructed negatively curved carbon
crystals, which are different from the Mackay–Terrones’ structure, by using stan-
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dard realizations of topological crystals.

The fundamental region of Mackay–Terrones’ structure has octahedral symme-
try, which is same symmetry of truncated octahedrons. Truncated octahedrons
consist eight hexagons, which have D6-symmetry (see 4.3). Our method is, 1) we

z = 0

z = 1

y 
= 

0

y = 1 x 
= 

1

x = 0

a) b) c)

d)

e)

Figure 4.3: Symmetry of the Mackay–Terrones’ structure. (c) is a fundamental
region of D6-action on a hexagon, which is diffeomorphic to (d). See also Fig. A.5
(Tagami–Liang–Naito–Kawazoe–Kotani [40]).

classify and construct a graph in a fundamental region of D6-action on a hexagon,
which is a trivalent graph when we extend to hexagon by D6-action (Fig. 4.3
(c)), 2) we extends the graph obtained in 1 to the trivalent graph on a hexagon
(Fig. 4.3 (b)), 3) we extends the graph obtained in 2 to the graph on a truncated
octahedron (Fig. 4.3 (a)), and 4) we calculate a standard realization of the graph
obtained in 3. The structure obtained in 4 is a candidate of sp2-carbon structure
with K < 0 (χ = −4). In fact, we prove the following result.

Theorem 4.4 (Tagami–Liang–Naito–Kawazoe–Kotani [40]). The equation to
obtain standard realization is linear: ∆x = b, where bi = ±eα, if a vertex vi
is adjacent to a vertex in neighbouring cell. The linear equation is solvable if
and only if

∑︁
bi = 0. The period lattice {ei} which gives a standard realization

is cubic, i. e., e = (e1, e2, e3) is a period lattice of a standard realization, then
eTe = E. If Φ is a standard realization, then Aut(X) ⊂ Aut(Φ(X)), and hence
X has the same symmetries with Mackay–Terrones’ structure.

In our method, we do not solve the equation (3.6). Instead, we only solve
the harmonic equation (3.3) using cubic periodicity. Hence, we should prove that
the realization is standard. To prove it, we use the Lagrange multiplier, and the
result of the Lagrange multiplier is eTe = E. This shows that the harmonic
realizations with the cubic lattice is standard.
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(a) (b) (c) (d)

metal metal metal semi-conductor
|V | = 176 |V | = 152 |V | = 152 |V | = 158

N6 = 60, N7 = 24 N6 = 48, N7 = 24 N5 = 24, N6 = 12 N6 = 68, N8 = 12
N7 = 24, N8 = 12

Figure 4.4: Mackay-like structures, which are physically stable. Physical
stabilities are calculated by density functional theory (DFT). For the notion
of “metal”/”semi-conductor”, see Section A.2. (Tagami–Liang–Naito–Kawazoe–
Kotani [40]).

Remark 4.5. No negatively curved sp2-carbon structure has been synthesised
so far. However, a piece of negatively curved carbon structure is chemically
synthesised by Kawasumi–Zhang–Segawa–Scott–Itami [15].
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5 A discrete surface theory

In the previous section, we explain “negatively” curved carbon structure; however,
the definition of negativity is that the Euler number is negative. This is a similar
situation with that “a surface with genus ≥ 2 cannot be non-negatively curved”.
Since the Gauss curvature of smooth surfaces is a function defined on each point
of the surface, the negativity in the previous section is not a precise property for
discrete surfaces.

On the other hand, there are many definitions of the Gauss curvature for
discrete surfaces. One of the examples is a triangulation of a smooth surface,
which is a discretization of a smooth surface. For triangulation of smooth surfaces,
the Gauss curvature is defined by “angle defects”, that is K(p) = 2π−∑︁ θi, where
θi is inner angle at p of each triangle gathering at p.

Applying the definition of the Gauss curvature by angle defects to the Mackay–
Terrones’ structure (a standard realization), we obtain K ≡ 0, since a standard
realization of a trivalent topological crystal satisfies the “balance condition” (3.3),
that is, each point and three neighbouring points are co-planer. Although each
triangle of triangulations of smooth surfaces is planer, however, each face of the
discrete surface is not planer.

Hence, we should construct a new definitions of the Gauss curvature and the
mean curvature for trivalent discrete surfaces.

5.1 Curvatures of trivalent discrete surfaces

Definition 5.1 (Kotani–Naito–Omori [16]). Let X = (V,E) be a trivalent graph,
and Φ: X −→ R3 be a realization of X. The realization Φ is called a trivalent
discrete surface if and only if for each x ∈ V , at least two vectors of {Φ(e) : e ∈ Ex}
are linearly independent.

We remark that this definition of trivalent discrete surfaces is not limited
to topological crystals, and thus we can treat C60 and single-wall nanotubes
(SWNTs) for example. But, the definition also contains K4 structure as trivalent
discrete surfaces, although, it does not look like a discrete surface.

Before giving a definition of curvatures for trivalent discrete surfaces, we recall
properties of curvature for smooth surfaces in R2.
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Definition 5.2 (Curvatures for smooth surfaces). Let p : Ω ⊂ R2 −→ R3

be a smooth surface, and n(x) be a unit normal vector at x ∈ Ω. We define
the first and the second fundamental forms by I = ⟨dp, dp⟩, and II = −⟨dn, dp⟩,
respectively. By using them, the Gauss curvature and the mean curvature are
defined by K(x) = det(I−1 II) and H(x) = 1

2 tr(I
−1 II), respectively.

Proposition 5.3. For a smooth surface p : Ω −→ R3 with a unit normal vector
field n, the Gauss curvature K satisfies ∇1n(x) × ∇2n(x) = K(x)(∇1p(x) ×
∇2p(x)), and the mean curvature H satisfies d

dtA(x, t)
⃓⃓⃓
t=0

= −H(x)A(x), where
A(x) is the area element of p and A(x, t) is the one of p+ tn.

To define curvatures for trivalent discrete surfaces which are an analogue
of Definition 5.2, it may be suffice to define the covariant derivative and the
unit normal vector at each vertex of trivalent discrete surfaces, and we should
prove that curvatures for trivalent discrete surfaces satisfy similar properties of
Proposition 5.3.

Definition 5.4 (Kotani–Naito–Omori [16]). Let Φ(X) be a trivalent discrete
surface, x ∈ Φ(X), and x1, x2, x3 its adjacency vertices. We define the unit
normal vector at x as the normal vector of the plane through e1, e2, e3 (see
Fig. 5.1), that is,

n(x) =
(e2 − e1)× (e3 − e1)

|(e2 − e1)× (e3 − e1)|
=

e1 × e2 + e2 × e3 + e3 × e1
|e1 × e2 + e2 × e3 + e3 × e1|

,

and the covariant derivative as

∇ex = Proj(e) = e−
⟨︁
e, n(x)

⟩︁
n(x), e ∈ Ex,

where ei = xi − x.

Definition 5.5 (Kotani–Naito–Omori [16]). Let X be a trivalent discrete surface
and x be a vertex of X. We define the first and the second fundamental forms by

I(x) =

(︄
⟨e2 − e1, e2 − e1⟩ ⟨e2 − e1, e3 − e1⟩
⟨e3 − e1, e2 − e1⟩ ⟨e3 − e1, e3 − e1⟩

)︄
,

II(x) = −
(︄
⟨e2 − e1, n2 − n1⟩ ⟨e2 − e1, n3 − n1⟩
⟨e3 − e1, n2 − n1⟩ ⟨ee − e1, n3 − n1⟩

)︄
,
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x

x1

x2

x3
x0 = Proj(x)

e1

e2

e3

n(x)

Figure 5.1: The unit normal vector for trivalent discrete surfaces. The area of
the triangle filled in gray is the local area at x.

and we define the Gauss curvature and the mean curvature at x by

K(x) = det(I(x)−1 II(x)),

H(x) =
1

2
tr(I(x)−1 II(x)).

Then, we obtain the following properties for curvatures of trivalent discrete
surfaces.

Theorem 5.6 (Kotani–Naito–Omori [16]). For a trivalent discrete surface Φ, the
Gauss curvature K satisfies ∇in(x)×∇jn(x) = K(x)(ei × ej), where ∇i = ∇ei ,
and the mean curvature H satisfies d

dt

⃓⃓⃓
t=0

A(Φ+tn) = −2
∑︁

x∈V H(x)A(x), where
A(x) = e1 × e2 + e2 × e3 + e3 × e1 is the local area at x and A(Φ) =

∑︁
x∈V A(x)

is the total area.

Remark 5.7. Unfortunately, the second fundamental form II of trivalent discrete
surfaces is not symmetric in general.

Theorem 5.8 (Kotani–Naito–Omori [16]). Trivalent discrete surface Φ is called
minimal if and only if H(x) = 0, which is expressed by the system of linear
equation

∇e2−e3n×∇e1Φ+∇e3−e1n×∇e2Φ+∇e1−e2n×∇e3Φ = 0.
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(a) (b)

Figure 5.2: (a) Mackay–Terrones’ structure (standard realization), (b) minimal
realization of the same structure (Kotani–Naito–Omori [16]).

Proposition 5.9 (Kotani–Naito–Omori [16]). If a trivalent discrete surface is a
plane graph, then K ≡ 0, H ≡ 0. Here, a graph is called plane, if it is drawn in a
plane without self-intersection. If a trivalent discrete surface satisfies x = rn(x)

for any x ∈ V , then K ≡ 1/r2, H ≡ −1/r.

We call a surface satisfying the x = rn(x) sphere shaped. Regular polyhedra
and semi-regular polyhedra (including C60) are sphere shaped.

Proposition 5.10 (Kotani–Naito–Omori [16]). Let CNT(λ, c) be a SWNT with
the chiral index c = (c1, c2) and the scale factor λ, that is,

(x, y) ↦→ (r(λ, c) cos(x/r(λ, c)), r(λ, c) sin(x/r(λ, c)), y).

Then the Gauss curvature and the mean curvature of CNT(λ, c) are

K(λ, c) =
4mz(c)

2(mx(c)
2 +my(c)

2)

3r(λ, c)2(mx(c)2 +m2
y(c) + (4/3)mz(c)2)2

,

H(λ, c) = − mx(c)

2r(λ, c)
· mx(c)

2 +my(c)
2 + (8/3)mz(c)

2

(mx(c)2 +my(c)2 + (4/3)mz(c)2)3/2
,

where mα(c) is a quantity defined from the chiral index. In particular, c1 = c2,
then mz(c) = 0, and

K(λ, c) = 0, H(λ, c) = − 1

2r(λ, c)
cos

C1

2
.
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(a) (b)

Figure 5.3: (a) CNT(λ, c) satisfiesH ̸≡ 1/r, whose normal vectors are not parallel
to normal vectors of the underlying cylinder. (b) small change of CNT(λ, c)
satisfies H ≡ 1/r, whose normal vectors are parallel to normal vectors of the
underlying cylinder (Kotani–Naito–Omori [16]).

(a) (b)

Figure 5.4: (a) The Gauss curvatures of Mackay–Terrones’ structure, (b) the
mean curvatures of Mackay–Terrones’ structure. By our definition of curvatures,
Mackay–Terrones’ structure is pointwise negatively curved. Blue (red) vertices
are negatively (positively) curved, and color densities expresses relative absolute
values of curvatures (Kotani–Naito–Omori [16])
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Remark 5.11. Curvatures of K4 structure satisfy K > 0 and H ≡ 0. In the case
of smooth surfaces, the mean curvature H ≡ 0 then the Gauss curvature K ≤ 0,
since the second fundamental form II is symmetric. On the other hand, in our
discrete case, II is not symmetric, and thus H ≡ 0 does not imply K ≤ 0,

5.2 Further problems

In [16], we discuss a convergence of sequence of “subdivision” of a trivalent discrete
surface. In our context, there are no underlying continuous object, and trivalent
discrete surfaces are essentially discrete object. For example, Mackay–Terrones’
structure is constructed by Schwarz P surface as model, but there are no relations
between the structure and the surface itself. We would find a “limit” of a sequence
of trivalent discrete surfaces, and make a relationship a trivalent discrete surface
and a continuous surface.

To discuss a convergence theory of trivalent discrete surfaces, we should con-
sider how to subdivide a trivalent graph, and how to realize the subdivided graph.
Goldberg–Coxeter subdivision for trivalent graphs defined by Dutour–Deza [7, 8]
is the good definition to subdivide a trivalent graph (see also Goldberg [11] and
Omori–Naito–Tate [31]). Kotani–Naito–Omori [16], Tao [41], and Kotani–Naito–
Tao [17] discuss convergences of sequences of trivalent discrete surfaces.

On the other hand, eigenvalues of the Laplacian of graphs are one of the main
objects in discrete geometric analysis (see for example [4, 12, 21]). Eigenvalues of
the Laplacian of graphs are also interest from physical and chemical view points
(see also Section A.2). Some properties of eigenvalues of Laplacians of Goldberg–
Coxeter constructions of trivalent graphs are discussed in Omori–Naito–Tate [31].

A Appendix

A.1 Space groups in R2 and R3

Definition A.1. A discrete finite subgroup P of O(d) is called a point group of
Rd, and a subgroup Γ of Euclidean motion group of Rd is called a space group of
Rd, if Γ is discrete subgroup and Γ ∩ T ∼= Zd, where T is the group of parallel
transformations in Rd.

A 2-dimensional point group P is extended to a space group, if and only if P
is 3-, 4-, or 6-fold symmetry, that is to say, P is one of C1, C2, C3, C4, C6, D1,
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D2, D3, D4, and D6. Here, Cn is the n-fold rotation group (∼= Zn cyclic group),
and Dn is the n-fold rotation and reflection group (dihedral group).

It is a very famous old result that the number of 2-dimensional space groups
is 17. 2-dimensional space groups may contain parallel transformations, 2-, 3-,
or 6-folds rotations with respect to a point, and glide reflections with respect to
a line. Here, a glide reflection is the composition of a reflection and a parallel
transformation.

(a) (b)

Figure A.1: Space groups of (a) and (b) are P6m and P3m1. Since P3m1 is a
subgroup of P6m, we can say that the figure (a) has higher symmetry than figure
(b).

3-dimensional point groups are one of Cn, Cnv, Cnh, Dn, Dnv, Dnh, S2n, T , Td,
Th, O, Oh, I, and Ih. Here, Cnv (Dnv) and Cnh (Dnh) are Cn(Dn) with additional
mirror plane perpendicular (parallel) to the axis to rotation, respectively, and
S2n is 2n-fold rotation and reflection axis. Group T , O, and I are well-known
as polyhedral groups, Td is T with improper rotations, Th, Oh, and Ih are T , O,
and I with reflections, respectively.

A 3-dimensional point group P extends a space group, if and only if P is 3-,
4-, or 6-fold symmetry, That is to say P is one of Cn, Cnv, Cnh, Dn, Dnh, and
Dnv, (n = 1, 2, 3, 4, 6).

It is also a famous old result that number of 3-dimensional space groups is 230.
3-dimensional space groups may contain parallel transformations, 2-, 3-, or 6-folds
rotations with respect to a point, reflections/glide reflections with respect to a
line, and improper rotation. Here a improper rotation is product with rotation
and reflection with respect to a line perpendicular to rotation axis.

The space group of diamond crystals is Fd3m, where F , d, 3, and m mean that
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“Face-centered cubic” structure, the group contains a glide reflection, the group
contains 3 improper rotations, and the group contains a reflection, respectively.

A.2 Electronic properties of carbon structures

States of electrons of atoms, molecules, and solids follow the Schrödinger equation

(A.1) −∆ψ + V ψ = Eψ, in R3,

where V is a potential and E is the energy of an electron. In cases of crystal
structures, the state ψ of electrons and the potential V are periodic, and hence
taking the Fourier transformation of (A.1), we obtain

(A.2) ˆ︁H ˆ︁ψ(ξ) = E(ξ) ˆ︁ψ(ξ),
where H = −∆ + V . The dispersive relation ξ ↦→ E(ξ) represents energies of
electrons with the wave number ξ in a crystal.

As an example, we consider electronic states of graphenes. Considering π-
electrons in graphenes, we obtain eigenvalues of ˆ︁H,

(A.3) E(ξ) = ±
√︁
3 + 2 cos(ξ1) + 2 cos(ξ2) + 2 cos(ξ1 − ξ2).

As shown in Fig. A.2, the lower band (valence band) and the upper band (con-
ductor band) attache at K and K ′ points with the Fermi energy (zero energy),
and hence graphenes are conductor (metal). Moreover, at K and K ′ points, both
bands have cone singularities. Such points are called Dirac points. On Dirac
points, effective masses of electrons is zero, which are very important properties
in solid state physics. Note that crystals whose conductor bands and valence
bands intersects are called metals or conductors, and crystals whose conduc-
tor/valence bands does not intersects but its gap less than about 1 eV are called
semi-conductors.

This calculation, which is called the tight-binding approximation, includes
only interaction arise from nearest atoms with respect to each atom. Hence, the
tight-binding approximations is based on graph theories, actions of an abelian
group, and the Fourier transformations, mathematically.

To calculate of electronic states of C60, we cannot apply the tight-binding
approximation, since C60 is not a crystal structure, but a molecule structure. The
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(a) (b) (c)

Γ
K

K ′

Figure A.2: (a) E(ξ) of graphenes (band structure), (b) closed up E(ξ) near K
and K ′ points. (c) highly-symmetric points in the Fourier space.

(a) (b)

Figure A.3: Iso-surfaces of density of electrons in graphenes by using density
functional theory (DFT). (a) probability 0.18, (b) probability 0.30.

Hückel method admits calculations of orbitals in hydrocarbon molecules, and is
also based on graph theories. Let X = (V,E) be the graph of a molecule structure,
that is, V are set of carbon atoms, and E are set of covalent bonds between carbon
atoms. Eigenvectors ψ of the adjacency matrix A of X are molecular orbitals of
electrons, and their eigenvalues λ are energies of orbitals.

Example A.2. Consider benzene molecules (C6H6), which contains six carbon
atoms, and whose graph is C6 (the cyclic graph with six vertices), and number
of electrons of π-orbitals (not using covalent bonds) is also six. Eigenvalues of
adjacency matrix of C6 are {2, 1, 1,−1,−1,−2}, and electrons in π-orbital occupy
orbitals with energies {−1,−1,−2} in the ground state, since each orbital can
contain two electrons by Pauli’s principle. We can write the wave function of the
ground state as ψ =

∑︁3
i=1 cijχj by using eigenvectors {χj}6j=1, and we obtain∑︁3

i=1 c
2
ij = 1/2. This means that π-electrons have equal distributions on each

carbon atom.
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By using similar calculations, we also obtain π-electrons have equal distribu-
tions on each carbon atom on C60 (see also Fig. A.4).

(a) (b)

(c) (d)

Figure A.4: Iso-surface of distributions of electrons of C60 by DFT. (a) probability
0.15, (b) its cut-model, (c) probability 0.25, (d) its cut-model.

A.3 Carbon nanotubes from geometric view points

Carbon nanotubes are carbon allotropes, whose carbon atoms chemically bind
with other three atoms with sp2-orbitals, and they are graphenes rolled up in
cylinders. There are many types of carbon nanotubes. However, in this section,
we only consider single wall nanotubes (SWNT). SWNTs have a parameter (chiral
index) c = (c1, c2), which is defined as follows.

Choose a vertex of a regular hexagonal lattice (a graphene) as an origin (0, 0),
the select fundamental piece, whose vertices are {vi}3i=0 of a regular hexagonal
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(a) (b)
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Figure A.5: DFT calculation result for Mackay-Terrones’ structure. (a) electronic
state, band gap is about 1 eV, and hence Mackay-Terrones’ structure is semi-
conductor, (b) iso-surface of density of electrons (p = 0.15).

lattice (A.4), and translation vectors as (A.5):

v0 = (0, 0), v1 = (0,−1), v2 = (1/2,
√
3/2), v3 = (−1/2,

√
3/2),(A.4)

a1 = (
√
3, 0), a2 = (1/2,−

√
3/2).(A.5)

Select (c1, c2) with c1 ∈ N>0 and c2 ∈ N≥0, and set c = c1a1 + c2a2, we
call c a chiral vector (or chiral index) of SWNT. On the other hand, t =

(1/ gcd(c1, c2))((c1+2c2)a1−(2c1+c2)a2), which is called a lattice vector, satisfies
⟨c, t⟩ = 0.

A SWNT with the chiral index c is the structure identifying 0 and c, along
the line between 0 and t. Note that the fundamental region of the SWNT with
the chiral index c is the rectangle with vertices 0, t, t+ c, and c. The diameter
of a SWNT with chiral index c = (c1, c2) is L =

√︁
c21 + c1c2 + c22.

Recently, there are several research composing a SWNT with short length
using organic chemistry (see for example [26]), and hence an index measuring
the length of SWNTs is needed. Matsuno–Naito–Hitosugi–Sato–Kotani–Isobe
propose such an index, which is called the length index of SWNT [26]:

(A.6)
√
3|c1(a1 − b1)− c2(a2 − b1)|

2
√︁
c21 + c1c2 + c22

,

with edge atoms coordinates (a1, b1) and (a2, b1). The index (A.6) measures how
many benzene rings (hexagons) are in the length direction.
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(4,2)

(0,0)

(4,−5)

c

t a1

a2

Figure A.6: Construction of a SWNT from a regular hexagonal lattice

SWNTs with c1 = c2 are called zigzag type, c2 = 0 are called armchair type,
and otherwise are called chiral type. These names come from shape of edges of
SWNTs (see Fig. A.7).

(a) (b) (c)

Figure A.7: (a) A zigzag type (c = (12, 0)), (b) a chiral type (c = (12, 8)), (c)
an armchair type (c = (12, 12)).

Electronic properties of SWNTs are also geometric. The following result is
well-known, and is obtained by tight binding approximations. If c1 ≡ c2 (mod 3),
then SWNTs with c = (c1, c2) are metallic, if not, then such SWNTs are semi-
conductors.
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