Calculus I [MATH161-1]

Final Exam (Spring, 2022)

Department :

Id number :

Name :

2. Find the interval of convergence of the series.

$$\sum_{n=0}^{\infty} \frac{(n!)^3}{(3n)!} x^n$$

1. Determine whether the series is absolutely convergent, conditionally convergent, or divergent. (b) $\sum_{n=3}^{\infty} \frac{\sin\left(\tan^{-1}\frac{1}{3n}\right)}{\ln n}$

(a)
$$\sum_{n=1}^{\infty} \sin\left(\frac{\cos(n\pi)}{n}\right)$$

Department :

3. (a) Use the definitions

$$\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}$$

and the Maclaurin series for e^x to find the Maclaurin series for $f(x) = \sinh x \cosh x$.

- (b) Use the Maclaurin series for $\ln(1+x)$ to find the Maclaurin series for $g(x) = \ln\left(\frac{1+x}{1-x}\right)$, where |x| < 1.
- (c) Use (a) and (b) to find the sum of the series.

$$\sum_{n=0}^{\infty} \frac{1}{2n+1} \left(\frac{3^{n+1}}{(2n)!} + \frac{1}{3^n} \right)$$

4. Find the values of p for which the series is $\sum_{n=1}^{\infty} \frac{1}{\sqrt{\ln(n)}}$

convergent.
$$\sum_{n=2}^{\infty} \frac{n + \sqrt{\ln(n^n)}}{1 + n^p}$$

Department :	Id number :	Name :
 5. (a) Find the Taylor polynomial T₁₅(x) centered at a = 0. (b) Use (a) and Maclaurin series for function limit. (Do NOT use L'Hospital's rule to limit. (Do NOT use L'Hospital's rule to lim 2sin(x³) + tan(x³) - 3x³/x⁵ - tan⁻¹(x⁵) 	tions to find the	6. Let \mathbf{v}_1 and \mathbf{v}_2 be vectors with $ \mathbf{v}_1 = 3$, $ \mathbf{v}_2 = 5$, and $\mathbf{v}_1 \cdot \mathbf{v}_2 = 9$. If $\mathbf{v}_n = \operatorname{proj}_{\mathbf{v}_{n-2}} \mathbf{v}_{n-1}$ for $n \ge 3$, evaluate $\sum_{n=1}^{\infty} \mathbf{v}_2 \times \mathbf{v}_{2n+1} $.

Department :

if $\mathbf{f} \cdot (\mathbf{g} \times \mathbf{h}) = -2$.

7. Let $a,\ b,\ c,\ f,\ g$ and h be non-zero vectors. 8. (a) Find symmetric equations for the tangent line L to the curve of intersection of the parabolic cylinder (a) Find the scalar projection of **a** onto **c** if $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$, $4 \operatorname{proj}_{\mathbf{c}} \mathbf{a} = \operatorname{proj}_{\mathbf{c}} \mathbf{b}$, and $|\mathbf{c}| = 2$. $y = x^2$ and the paraboloid $z = 4y^2 + x^2$ at the point (1,1,5).(b) Find $(\mathbf{g} + 3\mathbf{h}) \cdot (\mathbf{f} \times 2\mathbf{g}) + 2\mathbf{g} \cdot (\mathbf{f} \times 4\mathbf{h})$ (b) Let \varPhi be the plane that passes through the point

(3,-1,3) and contains the line

 $x = 2t - 1, \quad y = 3t + 1, \quad z = 1 - t.$

Find an equation of the plane that contains the line Lof (a) and is perpendicular to the plane Φ .

Department :

- 9. Let $C: \mathbf{r}(t) = \langle \sqrt{2} e^t, e^t \sin t, e^t \cos t \rangle$.
- (a) Find the arc length function for the curve C measured from $P(\sqrt{2}, 0, 1)$ in the direction of increasing t.
- (b) Reparametrize the curve C with respect to arc length measured from $P(\sqrt{2}, 0, 1)$ in the direction of increasing t.
- (c) Find the point Q on the curve C if the length of the curve from $P(\sqrt{2}, 0, 1)$ to Q is 10.
- 10. Let $C: \mathbf{r}(t) = \left\langle 1-t, \frac{1}{3}t^3 t + \frac{2}{3}, 0 \right\rangle$ and let P be the point on C where the tangent line of C is parallel but not equal to the x-axis.
- (a) Find the point P and the normal plane of C at P.
- (b) Find the binormal vector of C at P.
- (c) Find an equation of the osculating circle of C at P by regarding C as a curve in the xy-plane.