1. Determine whether the series is absolutely convergent, conditionally convergent, or divergent.
(a) $\sum_{n=1}^{\infty} \sin \left(\frac{\cos (n \pi)}{n}\right)$
(b) $\sum_{n=3}^{\infty} \frac{\sin \left(\tan ^{-1} \frac{1}{3 n}\right)}{\ln n}$
2. Find the interval of convergence of the series.

$$
\sum_{n=0}^{\infty} \frac{(n!)^{3}}{(3 n)!} x^{n}
$$

3. (a) Use the definitions

$$
\sinh x=\frac{e^{x}-e^{-x}}{2}, \quad \cosh x=\frac{e^{x}+e^{-x}}{2}
$$

and the Maclaurin series for e^{x} to find the Maclaurin series for $f(x)=\sinh x \cosh x$.
(b) Use the Maclaurin series for $\ln (1+x)$ to find the

Maclaurin series for $g(x)=\ln \left(\frac{1+x}{1-x}\right)$, where $|x|<1$.
(c) Use (a) and (b) to find the sum of the series.

$$
\sum_{n=0}^{\infty} \frac{1}{2 n+1}\left(\frac{3^{n+1}}{(2 n)!}+\frac{1}{3^{n}}\right)
$$

4. Find the values of p for which the series is convergent. $\sum_{n=2}^{\infty} \frac{n+\sqrt{\ln \left(n^{n}\right)}}{1+n^{p}}$
5. (a) Find the Taylor polynomial $T_{15}(x)$ for $\tan \left(x^{3}\right)$ centered at $a=0$.
(b) Use (a) and Maclaurin series for functions to find the limit. (Do NOT use L'Hospital's rule to find the limit.) $\lim _{x \rightarrow 0} \frac{2 \sin \left(x^{3}\right)+\tan \left(x^{3}\right)-3 x^{3}}{x^{5}-\tan ^{-1}\left(x^{5}\right)}$
6. Let v_{1} and v_{2} be vectors with

$$
\left|\mathrm{v}_{1}\right|=3, \quad\left|\mathrm{v}_{2}\right|=5, \quad \text { and } \quad \mathrm{v}_{1} \cdot \mathrm{v}_{2}=9
$$

If $\mathbf{v}_{n}=\operatorname{proj}_{\mathbf{v}_{n-2}} \mathbf{v}_{n-1}$ for $n \geq 3$, evaluate $\sum_{n=1}^{\infty}\left|\mathbf{v}_{2} \times \mathbf{v}_{2 n+1}\right|$.
7. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{f}, \mathrm{g}$ and h be non-zero vectors.
(a) Find the scalar projection of a onto c if $\mathrm{a}+\mathrm{b}+\mathrm{c}=0, \quad 4 \operatorname{proj}_{\mathrm{c}} \mathrm{a}=\operatorname{proj}_{\mathrm{c}} \mathrm{b}$, and $|\mathrm{c}|=2$.
(b) Find $(g+3 h) \cdot(f \times 2 g)+2 g \cdot(f \times 4 h)$ if $\mathrm{f} \cdot(\mathrm{g} \times \mathrm{h})=-2$.
8. (a) Find symmetric equations for the tangent line L to the curve of intersection of the parabolic cylinder $y=x^{2}$ and the paraboloid $z=4 y^{2}+x^{2}$ at the point $(1,1,5)$.
(b) Let Φ be the plane that passes through the point ($3,-1,3$) and contains the line

$$
x=2 t-1, \quad y=3 t+1, \quad z=1-t
$$

Find an equation of the plane that contains the line L of (a) and is perpendicular to the plane Φ.
9. Let $C: \mathbf{r}(t)=\left\langle\sqrt{2} e^{t}, e^{t} \sin t, e^{t} \cos t\right\rangle$.
(a) Find the arc length function for the curve C measured from $P(\sqrt{2}, 0,1)$ in the direction of increasing t.
(b) Reparametrize the curve C with respect to arc length measured from $P(\sqrt{2}, 0,1)$ in the direction of increasing t.
(c) Find the point Q on the curve C if the length of the curve from $P(\sqrt{2}, 0,1)$ to Q is 10 .
10. Let $C: \mathrm{r}(t)=\left\langle 1-t, \frac{1}{3} t^{3}-t+\frac{2}{3}, 0\right\rangle$ and let P be the point on C where the tangent line of C is parallel but not equal to the x-axis.
(a) Find the point P and the normal plane of C at P.
(b) Find the binormal vector of C at P.
(c) Find an equation of the osculating circle of C at P by regarding C as a curve in the $x y$-plane.

