

Calculus I [MATH161-1]

Final Exam (Spring, 2022)

Department :

Id number :

Name :

1. Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

(a) $\sum_{n=1}^{\infty} \sin\left(\frac{\cos(n\pi)}{n}\right)$

(b) $\sum_{n=3}^{\infty} \frac{\sin\left(\tan^{-1} \frac{1}{3n}\right)}{\ln n}$

2. Find the interval of convergence of the series.

$$\sum_{n=0}^{\infty} \frac{(n!)^3}{(3n)!} x^n$$

Department :

Id number :

Name :

3. (a) Use the definitions

$$\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}$$

and the Maclaurin series for e^x to find the Maclaurin series for $f(x) = \sinh x \cosh x$.

(b) Use the Maclaurin series for $\ln(1+x)$ to find the

Maclaurin series for $g(x) = \ln\left(\frac{1+x}{1-x}\right)$, where $|x| < 1$.

(c) Use (a) and (b) to find the sum of the series.

$$\sum_{n=0}^{\infty} \frac{1}{2n+1} \left(\frac{3^{n+1}}{(2n)!} + \frac{1}{3^n} \right)$$

4. Find the values of p for which the series is

convergent. $\sum_{n=2}^{\infty} \frac{n + \sqrt{\ln(n^n)}}{1 + n^p}$

Department :

Id number :

Name :

5. (a) Find the Taylor polynomial $T_{15}(x)$ for $\tan(x^3)$ centered at $a = 0$.
(b) Use (a) and Maclaurin series for functions to find the limit. (Do **NOT** use L'Hospital's rule to find the limit.)

$$\lim_{x \rightarrow 0} \frac{2\sin(x^3) + \tan(x^3) - 3x^3}{x^5 - \tan^{-1}(x^5)}$$

6. Let \mathbf{v}_1 and \mathbf{v}_2 be vectors with $|\mathbf{v}_1| = 3$, $|\mathbf{v}_2| = 5$, and $\mathbf{v}_1 \cdot \mathbf{v}_2 = 9$.
If $\mathbf{v}_n = \text{proj}_{\mathbf{v}_{n-2}} \mathbf{v}_{n-1}$ for $n \geq 3$, evaluate $\sum_{n=1}^{\infty} |\mathbf{v}_2 \times \mathbf{v}_{2n+1}|$.

Department :

Id number :

Name :

7. Let \mathbf{a} , \mathbf{b} , \mathbf{c} , \mathbf{f} , \mathbf{g} and \mathbf{h} be non-zero vectors.

(a) Find the scalar projection of \mathbf{a} onto \mathbf{c}

if $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$, $4\text{proj}_{\mathbf{c}}\mathbf{a} = \text{proj}_{\mathbf{c}}\mathbf{b}$, and $|\mathbf{c}| = 2$.

(b) Find $(\mathbf{g} + 3\mathbf{h}) \cdot (\mathbf{f} \times 2\mathbf{g}) + 2\mathbf{g} \cdot (\mathbf{f} \times 4\mathbf{h})$

if $\mathbf{f} \cdot (\mathbf{g} \times \mathbf{h}) = -2$.

8. (a) Find symmetric equations for the tangent line L to the curve of intersection of the parabolic cylinder $y = x^2$ and the paraboloid $z = 4y^2 + x^2$ at the point $(1, 1, 5)$.

(b) Let Φ be the plane that passes through the point $(3, -1, 3)$ and contains the line

$$x = 2t - 1, \quad y = 3t + 1, \quad z = 1 - t.$$

Find an equation of the plane that contains the line L of (a) and is perpendicular to the plane Φ .

Department :

Id number :

Name :

9. Let $C: \mathbf{r}(t) = \langle \sqrt{2} e^t, e^t \sin t, e^t \cos t \rangle$.

(a) Find the arc length function for the curve C measured from $P(\sqrt{2}, 0, 1)$ in the direction of increasing t .

(b) Reparametrize the curve C with respect to arc length measured from $P(\sqrt{2}, 0, 1)$ in the direction of increasing t .

(c) Find the point Q on the curve C if the length of the curve from $P(\sqrt{2}, 0, 1)$ to Q is 10.

10. Let $C: \mathbf{r}(t) = \left\langle 1-t, \frac{1}{3}t^3 - t + \frac{2}{3}, 0 \right\rangle$ and let P be the point on C where the tangent line of C is parallel but not equal to the x -axis.

(a) Find the point P and the normal plane of C at P .

(b) Find the binormal vector of C at P .

(c) Find an equation of the osculating circle of C at P by regarding C as a curve in the xy -plane.