Calculus I (MATH 161)
Final Exam (Spring, 2022)
Department :
Id number :
Name :

풀이 과정을 자세히 기술해야 합니다.

1. Test the series for convergence or divergence, give reasons for your answers.
(a) $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!e^{\sqrt{n}}}$
(b) $\sum_{n=3}^{\infty} \frac{1}{n(\ln n)^{2}+\ln n}$
(c) $\sum_{n=1}^{\infty}(-1)^{n-1}\left(1-\cos \left(\frac{1}{n}\right)\right)$
2.

(a) Find the Maclaurin series for $x e^{x}$.
(b) Find the sum of the series.

$$
\sum_{n=0}^{\infty} \frac{n 2^{n}}{(n+1)!}
$$

3. Let $f(x)=\arcsin (x)$.
(a) Find $f^{(57)}(0)$.
(b) Estimate $\arcsin (-0.1)$ with |error| $<10^{-2}$.
4. Let u and v be vectors in V_{3} satisfying

$$
|\mathrm{u}+\mathrm{v}|=5, \quad|\mathrm{u}-\mathrm{v}|=3
$$

(a) Evaluate $|\mathrm{u}|^{2}+|\mathrm{v}|^{2}$.
(b) Evaluate u •v.
5. Let α be a plane that is parallel to the plane $x-y-z-1=0$ and contains the line $\frac{x}{3}=y+4=\frac{z}{2}$. Let β be a plane that passes through the point $(2,1,1)$ and contains the line of intersection of the planes $x+2 y-z=3$ and $2 x-y+3 z=-4$.

Find the angle between the planes α and β.
6. Consider points $P(1,0,0), Q(0,1,0)$, and $R(0,0,1)$. Let W be any point in the line L passing through the points $(2,0,0)$ and $(0,1,1)$.
(a) Explain geometrically why the volume of the parallelepiped with adjacent edges $P Q, P R$, and $P W$ is constant.
(b) Evaluate the volume.
7. Find the osculating circle of $x y=2$ at the point $(1,2)$.
8. Find the radius of convergence and the interval of convergence of the power series.

$$
\sum_{n=3}^{\infty} \frac{x^{n}}{(\ln n)^{\ln n}}
$$

9. (a) Find a vector function $r(t)$ that parameterize the curve of intersection of the cylinder $x^{2}+z^{2}=4$ and the plane $y+z=2$.
(b) Find equation of the normal plane P_{1} of the curve $\mathrm{r}(\mathrm{t})$ at the point $(\sqrt{3}, 1,1)$.
(c) Find equation of the plane P_{2} that is perpendicular to the plane P_{1} and contains the line $u(t)=(2 t-1) i+(t+3) j+(2-t) k$
10. Find all p such that the series is convergent.

$$
\sum_{n=3}^{\infty}(\ln n)^{p} \tan \left(\frac{1}{n}\right)
$$

