Calculus I (MATH 161)
Department :
Id number :
Midterm Exam (Spring, 2022)

1. (15 pts.) Evaluate the limit, if it exists. If not, give reasons.
(a) $\lim _{x \rightarrow 0^{+}} \frac{x^{2}-1+\sin \left(\cos ^{-1} x\right)}{x^{3}}$.
(b) $\lim _{x \rightarrow 0} \tanh \left(\frac{1}{x^{2}}\right)(2 x+1)^{\cot x}$.
2. (15 pts.)
(a) Find the equation of the tangent line to the curve

$$
\tan ^{-1}\left(x^{2} y+y\right)=\frac{1}{2} \cos ^{-1}\left(x+x y^{3}\right) \quad \text { at } x=0
$$

(b) Find the linearization of the function
$f(x)=\cos ^{-1}(\tanh x)$
at $x=0$.
3. (15 pts.) Show that

$$
|\ln x-\ln y| \geq|x-y|
$$

for all $x, y \in(0,1)$.
4. (15 pts.)
(a) Show that $\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$ for $x \in \mathbb{R}$ and $\cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right)$ for $x \geq 1$.
(b) Find the volume of the solid obtained by rotating the region bounded by $y=\ln \left(x+\sqrt{x^{2}+1}\right)$,
$y=\ln \left(x+\frac{1}{2}+\sqrt{\left(x+\frac{1}{2}\right)^{2}-1}\right)$ and $y=0$ about the y-axis.
5. (15 pts.) Evaluate the following integral

$$
\int \frac{x^{4}-x^{3}+4 x^{2}+x+1}{x\left(x^{2}+1\right)^{2}} d x .
$$

6. (15 pts.) Find the values of p for which the integral converges.

$$
\int_{2}^{\infty} \frac{1}{\left(x^{5}-x\right)^{p}} d x
$$

7. (15 pts.) Let $f(b)$ be the area of the surface generated by rotating the curve $y=\sinh ^{-1} x, 0 \leq x \leq b$, about the x-axis and $g(b)$ be the area of the surface generated by rotating the curve $y=\sinh ^{-1} x, 0 \leq x \leq b$, about the y-axis.
Compute $\quad \lim _{b \rightarrow 0^{+}} \frac{f(x)}{g(x)}$.
8. (15 pts.) Find the arc length of the curve C from $t=0$ to the first point where there is a horizontal tangent line.

$$
C: x(t)=2 \cos t-\cos 2 t, \quad y(t)=2 \sin t-\sin 2 t .
$$

9. (15 pts.) Consider the region Ω in the first quadrant between two polar curves $r=2 \cos \theta$ and $r=2 \sin \theta$. Find the volume of the solid generated by revolving the region Ω about the y-axis.
10. (15 pts.)
(a) Graph the curve $r=2-\cos \left(\frac{\theta}{2}\right)$.
(b) Find the area of the region that lies inside both curves $r^{2}=\sqrt{2} \sin 4 \theta$ and $r=1$.
