Calculus I (MATH 161)

Midterm Exam (Spring, 2022)

Department :	Id number :	Name :
 1. (15 pts.) Evaluate the limit, if it extreasons. (a) lim_{x→0⁺} x²-1+sin(cos⁻¹x)/x³. (b) lim_{x→0} tanh(1/x²)(2x+1)^{cotx}. 	ists. If not, give	 2. (15 pts.) (a) Find the equation of the tangent line to the curve tan⁻¹(x²y + y) = ¹/₂ cos⁻¹(x + xy³) at x = 0. (b) Find the linearization of the function f(x) = cos⁻¹(tanh x) at x = 0.

Dopartmont	•	
Department	•	

3. (15 pts.) Show that $|\ln x - \ln y| \geq |x - y|$ for all $x, y \in (0,1).$

4. (15 pts.)
(a) Show that sinh⁻¹x = ln(x + √x²+1) for x ∈ ℝ and cosh⁻¹x = ln(x + √x²-1) for x ≥ 1.
(b) Find the volume of the solid obtained by rotating

the region bounded by $y = \ln(x + \sqrt{x^2 + 1})$, $y = \ln\left(x + \frac{1}{2} + \sqrt{\left(x + \frac{1}{2}\right)^2 - 1}\right)$ and y = 0 about the

y-axis.

Departmen	t: Io	d number :	Name :
5. (15 pts.)	Evaluate the following integral $\int \frac{x^4 - x^3 + 4x^2 + x + 1}{x(x^2 + 1)^2} dx.$	1	6. (15 pts.) Find the values of p for which the integral converges. $\int_{2}^{\infty} \frac{1}{(x^{5}-x)^{p}} dx.$

Department :	Id number :	Name :
7. (15 pts.) Let $f(b)$ be the area of the generated by rotating the curve $y = s$ about the x-axis and $g(b)$ be the are generated by rotating the curve $y = s$ about the y-axis. Compute $\lim_{b\to 0^+} \frac{f(x)}{g(x)}$.	e surface $\sinh^{-1}x, 0 \le x \le b$, a of the surface $\sinh^{-1}x, 0 \le x \le b$,	8. (15 pts.) Find the arc length of the curve C from $t=0$ to the first point where there is a horizontal tangent line. $C: x(t) = 2\cos t - \cos 2t$, $y(t) = 2\sin t - \sin 2t$.

Department :	Id number :	Name :
Department : 9. (15 pts.) Consider the region quadrant between two polar cur $r = 2\sin\theta$. Find the volume of the revolving the region Ω about the region θ	Id number : Ω in the first rves $r = 2 \cos \theta$ and he solid generated by he y-axis.	Name : 10. (15 pts.) (a) Graph the curve $r=2-\cos{(\frac{\theta}{2})}$. (b) Find the area of the region that lies inside both curves $r^2 = \sqrt{2} \sin{4\theta}$ and $r=1$.