Calculus I [MATH161-1]

Midterm Exam (Spring, 2022)

Department :	Id number :	Name :
1. (a) Find an equation of the tangent line to $\sin^{-1}(2 - xy^2) + 1 = y^x$ at the point (2, 1).	o the curve	 2. Suppose that C is the curve defined by the parametric curve x = sin 3t, y = cos 2t, 0 ≤ t ≤ 2π. (a) Find the points on C where the tangent is horizontal
(b) Find an equation of the normal line to curve $r=2+\sin 3\theta$ at the point specified by $\theta=\pi/3$	o the polar	or vertical. (b) Find $\frac{d^2y}{dx^2}$.

Department :	Id number :	Name :
3. Evaluate $\lim_{x \to \frac{\pi}{2}^{-}} \left(\frac{1 - k \cot x}{1 + k \cot x} \right)^{\sec x}, w$	here k is a non zero	4. Suppose that $f(x)$ is differentiable and $f'(x)$ is continuous with $f(x) \ge 0$, $f(3) = 8$, and $f'(3) = \sqrt{3}$.
constant.		(a) Let $s(x)$ be an arc length for a curve $y = f(x)$ from the starting point $P_0(0, f(0))$ to the point $P(x, f(x))$ and s(3) = 10. Use a linear approximation to estimate $s(3.01)$.
		(b) Let $g(t)$ and $h(t)$ be the area of the surface generated by rotating the curve $y = f(x)$, $0 \le x \le t$, about the <i>x</i> -axis and <i>y</i> -axis, respectively. Compute differentials dg and dh for $t = 3$ and $dt = \Delta t = 0.01$.

5.

(a) Use differentiation to show that

$$\cosh^{-1} x = x \sqrt{x^2 - 1} - 2 \int_1^x \sqrt{t^2 - 1} dt.$$

(b) The area of the shaded hyperbolic sector in the following figure is 2.

Use (a) to find the point P in the first quadrant.

- 6. Evaluate the integrals
- (a) $\int \sin(2\tan^{-1}x)dx$
- (b) $\int \sinh x \tan^{-1} (\sinh x) dx$

Department :	Id number :	Name :
7. $\int_{1}^{\infty} \frac{5x^{2} + 6x - 5}{x^{p}(x+1)(x^{2} + 4x + 5)} dx$ (a) When $p = 1$, evaluate this integral. (b) Find the values of p for which the $x = 1$	integral converges.	 8. The integral represents the volume of the solid obtained by rotating the region R about the y-axis. ∫₀^{1/√3}π(sinh⁻¹y)²dy + ∫_{1/√3}¹π(lny)²dy (a) Sketch the region R. (b) Use the method of cylindrical shells to find the volume of the solid.

Department :	Id number :	Name :
9. Find the area of the region enclosed parametric curve, x -axis and y -axis. $x = -\sin(3t), y = 2\cos t, 0 \le t \le \frac{\pi}{2}$	by the given	 10. (a) Sketch the polar curves r = 2sinθ + 2cosθ, r² = 12sin2θ and find all points of intersection. (b) Find the area of the region that lies inside both curves.