Department :
Id number :
Name :
1.
(a) Find an equation of the tangent line to curve

$$
\sin ^{-1}\left(2-x y^{2}\right)+1=y^{x}
$$

at the point $(2,1)$.
(b) Find an equation of the normal line to the polar curve

$$
r=2+\sin 3 \theta
$$

at the point specified by $\theta=\pi / 3$
2. Suppose that C is the curve defined by the parametric curve $x=\sin 3 t, y=\cos 2 t, 0 \leq t \leq 2 \pi$.
(a) Find the points on C where the tangent is horizontal or vertical.
(b) Find $\frac{d^{2} y}{d x^{2}}$.
3. Evaluate $\lim _{x \rightarrow \frac{\pi}{2}-}\left(\frac{1-k \cot x}{1+k \cot x}\right)^{\sec x}$, where k is a non zero constant.
4. Suppose that $f(x)$ is differentiable and $f^{\prime}(x)$ is continuous with $f(x) \geq 0, f(3)=8$, and $f^{\prime}(3)=\sqrt{3}$.
(a) Let $s(x)$ be an arc length for a curve $y=f(x)$ from the starting point $P_{0}(0, f(0))$ to the point $P(x, f(x))$ and $s(3)=10$.
Use a linear approximation to estimate $s(3.01)$.
(b) Let $g(t)$ and $h(t)$ be the area of the surface generated by rotating the curve $y=f(x), 0 \leq x \leq t$, about the x-axis and y-axis, respectively.
Compute differentials $d g$ and $d h$ for $t=3$ and $d t=\Delta t=0.01$.
5.
(a) Use differentiation to show that

$$
\cosh ^{-1} x=x \sqrt{x^{2}-1}-2 \int_{1}^{x} \sqrt{t^{2}-1} d t
$$

(b) The area of the shaded hyperbolic sector in the following figure is 2 .
Use (a) to find the point P in the first quadrant.

$$
x^{2}-y^{2}=1
$$

6. Evaluate the integrals
(a) $\int \sin \left(2 \tan ^{-1} x\right) d x$
(b) $\int \sinh x \tan ^{-1}(\sinh x) d x$
7. $\int_{1}^{\infty} \frac{5 x^{2}+6 x-5}{x^{p}(x+1)\left(x^{2}+4 x+5\right)} d x$
(a) When $p=1$, evaluate this integral.
(b) Find the values of p for which the integral converges.
8. The integral represents the volume of the solid obtained by rotating the region R about the y-axis.

$$
\int_{0}^{1 / \sqrt{3}} \pi\left(\sinh ^{-1} y\right)^{2} d y+\int_{1 / \sqrt{3}}^{1} \pi(\ln y)^{2} d y
$$

(a) Sketch the region R.
(b) Use the method of cylindrical shells to find the volume of the solid.
9. Find the area of the region enclosed by the given parametric curve, x-axis and y-axis.

$$
x=-\sin (3 t), y=2 \cos t, \quad 0 \leq t \leq \frac{\pi}{2}
$$

10.
(a) Sketch the polar curves

$$
r=2 \sin \theta+2 \cos \theta, \quad r^{2}=12 \sin 2 \theta
$$

and find all points of intersection
(b) Find the area of the region that lies inside both curves.

