단답형: (1번~5번) 단답형의 답은 페이지 하단에 주어진 네모 칸에 써야 점수 인정받습니다. 주의할 것.
1.(6 pts.) Use the Maclaurin series for $f(x)=e^{-x^{2}} \sin x^{2}$ to find $f^{(10)}(0)$.
2.(6 pts.) Let $u=\langle 3,2,1\rangle$ and $v=\langle 1,0,1\rangle$. Then
(a) Find the orthogonal projection otho u of u on v.
(b) Find the area of the parallelogram determined by u and v
3.(6 pts.) Find the distance between the skew lines

$$
\begin{aligned}
& L_{1}: \frac{x-3}{2}=\frac{y+1}{4}=2-z \text { and } \\
& L_{2}: \frac{x-3}{2}=y-2=\frac{z+2}{2} .
\end{aligned}
$$

4.(6 pts .) Let C be the curve of intersection of the surfaces $z=x^{2}-y^{2}$ and $x^{2}+y^{2}=4$. Find parametric equations for the tangent line to curve C at the point $(\sqrt{2}, \sqrt{2}, 0)$.
5.(6 pts.) Find an equation of the tangent plane of the surface

$$
x \tan ^{-1}\left(y^{2}\right)+2 x y z^{2}=z x-y+1
$$

at the point $(1,0,-1)$.

1			
2			
3			
4			
5			

단답형: (6번~10번) 단답형의 답은 페이지 하단에 주어진 네모 칸에 써야 점수 인정받습니다. 주의할 것.
6. 6 pts.) Let $w=x y+y z, x=r \sin \theta, y=r^{2}(\sin \theta)^{2}$, and $z=r^{2} \sin \theta$. Find $\frac{\partial w}{\partial \theta}$ at $(r, \theta)=\left(\sqrt{2}, \frac{\pi}{4}\right)$.
7.(6 pts.) Let $f(x, y)=\int_{x y}^{x^{2}+y^{2}} e^{-2(t-1)^{2}} d t$. Evaluate $f_{x}(1,0)$.
8.(6 pts.) Find the directional derivative of the function $f(x, y, z)=\frac{x^{2 y z}}{2}$ at the point $(e, 2,1)$ in the direction of the vector $v=3 \mathrm{j}+4 \mathrm{k}$.
9.(6 pts.) Find (a), (b), and (c) such that

$$
\begin{aligned}
& \iint_{R}(2-x) d A \\
= & \int_{\square(a)}^{0} \int_{-x-1}^{x+1}(2-x) d y d x+\int_{0}^{1} \int_{\square(b)}^{\square(c)}(2-x) d y d x,
\end{aligned}
$$

where $R=\left\{(x, y) \in \mathbb{R}^{2}| | x|+|y| \leq 1\}\right.$.
10.(6 pts.) Find the volume of the solid enclosed by the surface $z=x \sec ^{2} y$ and the planes
$x=0, x=2, y=0, y=\frac{\pi}{4}, z=0$.

서술형: (11번~16번) 풀이 과정을 자세히 기술해야 합니다.

11.(15 pts.) Find a power series representation for the function $f(x)=x^{2} \tan ^{-1}\left(4 x^{2}\right)$ and determine the radius of convergence.
12.(15 pts.) The surface $S: z=x^{2}+y^{2}-1$ and the curve $C: \boldsymbol{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle(t \geq 0)$ intersect at a point P in the first octant. Find the angle of intersection between the surface S and the curve C at P. (This is the angle between the tangent plane to the surface and the tangent vector to the curve.)
13.(15 pts.) Let $\bar{D}_{u} f(x, y, z)$ be the directional derivative of the function f at (x, y, z) in the direction of the vector u. Let

$$
f(x, y, z)=x+a y+b z+7
$$

$u=\langle 3,0,-1\rangle, v=\langle 1,1,-1\rangle$, and $h=\langle 1,-2,-2\rangle$.
If $\bar{D}_{v} f(x, y, z)=\sqrt{3}$ and $\bar{D}_{h} f(x, y, z)=5$, then find $\bar{D}_{u} f(x, y, z)$.
14.(15 pts.) Let

$$
f(x, y, z)=2(x-y+z)
$$

and $D=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}-4 y \leq 0, y \geq 2\right\}$.
Find the absolute maximum and minimum values of f on the set D.
15.(20 pts.) Let $f(x, y)=12 x y-2 x^{2} y+4 x y^{2}$.
(a) Find all critical points of $f(x, y)$.
(b) Find the local maximum and minimum values, and saddle points of $f(x, y)$.
(c) Find the absolute maximum and minimum values of $f(x, y)$ on the region T. Here T is the closed triangular region in the $x y$-plane with vertices $(0,0),(6,0)$, and $(4,-4)$.

$$
\begin{aligned}
& \int_{-\frac{\pi}{2}}^{0} \int_{-y}^{\frac{\pi}{2}} \sin \left(x^{2}\right) d x d y+\int_{0}^{\pi} \int_{\frac{1}{2} y}^{\frac{\pi}{2}} \sin \left(x^{2}\right) d x d y \\
= & \int_{0}^{\frac{\pi}{2}} \int_{-x}^{2 x} \sin \left(x^{2}\right) d y d x=-\frac{3}{2}\left(\cos \left(\frac{\pi^{2}}{4}\right)-1\right)
\end{aligned}
$$

