1.(20 pts.) Find the limit, if it exists. If the limit does not exist, explain why.
(a) $\lim _{x \rightarrow \infty} \frac{(x+1) \sin x^{2}}{x^{2}}$
(b) $\lim _{x \rightarrow 0} \frac{1}{x}\left(\frac{1}{\sinh x}-\frac{1}{\tanh x}\right)$
(c) $\lim _{x \rightarrow 0^{+}}\left(1+\tan ^{-1} x\right)^{-1 / x}$
(sol)
2.(20 pts.) Evaluate the integral.
(a) $\int \tan ^{3} x \sec x d x$
(b) $\int e^{x} \sqrt{1+e^{2 x}} d x$
(c) $\int_{\sqrt{3}}^{2} \frac{2 x\left(x^{2}+11\right)}{\left(x^{2}-1\right)^{2}} d x$
(sol)
3. (20 pts.) Determine whether the series is absolutely convergent, conditionally convergent, or divergent.
(a) $\sum_{n=0}^{\infty} \frac{2(-1)^{n}}{\sqrt[3]{(n+1)^{2}}}$
(b) $\sum_{n=3}^{\infty} \frac{5^{n} n!}{n^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{\sin n}{3 n^{2}}$
(sol)
4.(15 pts.) Let the curve C be defined by

$$
\ln (x+x y-y)+\tan ^{2}\left(\cos ^{-1}\left(\frac{1}{x \sqrt{y}}\right)\right)=1
$$

Then, find an equation of the tangent line to the curve C at $x=1$.
(sol)
5.(15 pts.) Evaluate the integral

$$
\int_{0}^{2} \sqrt{\frac{2+x}{2-x}} d x
$$

(sol)
6.(15 pts.) Let $I=\left[-\frac{2 \pi}{3}, \frac{4 \pi}{3}\right]$. A curve C is defined by the parametric equations

$$
x=\cos t+t \sin t, y=\sin t-t \cos t \text { for } t \in I .
$$

(a) Find the points on the curve C where the tangent is horizontal or vertical on I.
(b) Find $\frac{d^{2} y}{d x^{2}}$ for the curve C when $t=\frac{\pi}{4}$.
(sol)
7.(15 pts.) Answer the following questions.
(a) Graph the polar curves $r=2-2 \sin \theta$ and $r=2 \sin \theta$.
(b) Find the area of the region enclosed by the curves $r=2-2 \sin \theta$ and $r=2 \sin \theta$.
(sol)
8.(15 pts.) Let $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n 5^{n}}$.
(a) Determine whether the series is absolutely convergent, conditionally convergent, or divergent.
(b) Approximate the sum of the series correct to \mid error $\mid \leq 0.0001$.
(Do NOT evaluate the sum of fractions.)
(sol)
9.(15 pts.) Consider the power series

$$
\sum_{n=2}^{\infty} \frac{(x+2)^{n}}{n \sqrt{\ln n}}
$$

(a) Find the radius of convergence of the power series.
(b) For what values of x does the series converge?
sol)

