Calculus II [MATH 162]

Department :
Id number :
Name :
1.(15pts.) Find the center of mass of the lamina bounded by the ellipse

$$
x^{2}+4(y-1)^{2}=4
$$

if the density function is given by $\rho(x, y)=y$.
2.(10pts.) Let $\mathrm{F}=(x-\sin x) \mathbf{i}+\left(y^{2}+e^{y}\right) \mathbf{j}+(x+z) \mathbf{k}$ and C be the curve given by
$\mathrm{r}(t)=(1+\sin (20 t)) \cos t \mathbf{i}+(1+\sin (20 t)) \sin t \mathbf{j}+\cos (20 t) \mathbf{k}$ with $0 \leq t \leq 2 \pi$.
Find the line integral $\int_{C} \mathrm{~F} \cdot d \mathbf{r}$.
3.(10pts.) Let $\mathrm{F}(x, y)=\frac{-y \mathbf{i}+x \mathrm{j}}{x^{2}+y^{2}}$. Compute the line integral $\int_{C} \mathrm{~F} \cdot d \mathbf{r}$, where C is the union of three semicircles from $(3,0)$ to $(-3,0)$ as following.

4.(15pts.) Find the maximum value of $\iiint_{S} \mathrm{~F} \cdot d \mathrm{~S}$ for any simple closed surface S oriented outward, where $\mathrm{F}=\left(x-x^{3}\right) \mathbf{i}+\left(y-y^{3}\right) \mathbf{j}+\left(z-z^{3}\right) \mathbf{k}$

5.(15 pts.)

(1) Show that the vector field is conservative if

$$
\mathrm{F}(x, y, z)=\left\langle\frac{e^{z}}{\left(1+x^{2}\right)^{2}}, \sin ^{2} y, \frac{1}{2}\left(\frac{x}{x^{2}+1}+\tan ^{-1} x\right) e^{z}\right\rangle
$$

and find the line integral $\int_{C} \mathrm{~F} \cdot d \mathbf{r}$ if C is a curve from $(0,0,0)$ to $(1, \pi / 2,1)$.

6.(15 pts.)

Let $\mathrm{F}(x, y, z)=x z^{2} \mathbf{i}+\left(e^{y}-x^{3}\right) \mathbf{j}+\left(y^{2}-z e^{y}\right) \mathbf{k}$.
Find the flux of F across the part of the ellipsoid $x^{2}+y^{2}+4 z^{2}=4$ that lies above the plane $z=0$ and is oriented upward.
(2) Evaluate the line integral.

$$
\int_{C}\left(x y^{2}+2 z\right) d s
$$

$C: x=\cos 2 t, y=\sin 2 t, z=t, 0 \leq t \leq \frac{\pi}{4}$

7.(20 pts.)

(1) Evaluate $\iint_{S} x^{3}+z^{2} d S$, where S is the surface $x^{2}+y^{2}+z^{2}=4,-1 \leq z \leq \sqrt{3}$.

(2)

Find the area of the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies inside the cylinder $x^{2}+y^{2}=2 y$.
8.(15 pts.) Evaluate $\int_{C} \mathrm{~F} \cdot d \mathrm{r}$, where

$$
\mathrm{F}=(y z+2 x z) \mathrm{i}+\left(y z+\frac{z^{2}}{2}\right) \mathrm{j}+(y x+y z) \mathrm{k}
$$

and C is the boundary of the part of the ellipsoid

$$
x^{2}+\frac{y^{2}}{4}+z^{2}=1
$$

in the first octant, oriented counterclockwise as viewed from above.
9.(15 pts.) Verify that Stokes' Theorem is true for the given vector field

$$
\mathbf{F}(x, y, z)=2 z \mathrm{i}+x y \mathbf{j}+(z+2 y) \mathbf{k}
$$

and the surface S which is the part of the plane $x-2 z=3$ that lies inside of the cylinder $y^{2}+z^{2}=1$, oriented in the direction of positive x-axis.
10.
(1) 다음 연립방정식을 행렬을 이용하여 나타내고 크래머 공식을 이용하여 해 중 x_{2} 를 구하라.(풀이 과정을 서술)
(8점)

$$
\left\{\begin{array}{l}
x_{1}+b x_{2}+x_{3}+x_{4}=1 \\
a x_{1}+a x_{4}=0 \\
2 x_{1}+x_{2}+c x_{3}+(2-c) x_{4}=1 \\
3 x_{1}+x_{3}+2 x_{4}=0
\end{array}\right.
$$

(2) $A=\left(\begin{array}{lll}a & b & c \\ \alpha & \beta & \gamma \\ x & y & z\end{array}\right)$ 일 때 $|A|=k(\neq 0)$ 이다.

다음 주어진 행렬의 행렬식을 k 로 나타내어라.(단답형) (12점)
a. $\quad B=2\left(\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & -2\end{array}\right)\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)\left(\begin{array}{lll}a & b & c \\ \alpha & \beta & \gamma \\ x & y & z\end{array}\right), \operatorname{det}(B)=$
b. $\quad C=\left(\begin{array}{ccc}6 x & 3 y & 3 z \\ -4 \alpha & -2 \beta & -2 \gamma \\ 2 a & b & c\end{array}\right), \quad \operatorname{det}(C)=$
c. $D=\left(\begin{array}{ccc}\alpha+x & a & 2 x \\ \beta+y & b & 2 y \\ \gamma+z & c & 2 z\end{array}\right), \quad \operatorname{det}(D)=$

