Calculus II [MATH162]

Final Exam (Fall, 2022)

Department: Id number: Name:

1.(14 pts.) Use the change of variables to evaluate $\iint_{R} \sqrt{3} \cos(x^2 - xy + y^2) \; dA$

where R is the region bounded by the ellipse $x^2-xy+y^2=1. \label{eq:continuous}$

2.(14 pts.) Find the center of mass of a wire that lies along the curve $\mathbf{r}(t)=(t^2-1)\,\mathbf{j}+2t\,\mathbf{k}\,,\ -1\leq t\leq 1,$ if the density is $\delta\left(x,y,z\right)=15\,\sqrt{y+2}\,.$

Department:

Id number:

Name:

3.(15 pts.) Let $\mathbf{F}(x,y,z) = \frac{-y}{x^2+y^2}\mathbf{i} + \frac{x}{x^2+y^2}\mathbf{j} + e^z\mathbf{k}$ and C be a curve given by $\mathbf{r}(t) = \cos^2t\,\mathbf{i} + \sin^3t\,\mathbf{j} + t\,\mathbf{k}, \ 0 \le t \le \pi/2.$ Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

4.(14 pts.) Use the Green's Theorem to evaluate the line integral of

$$\mathbf{F}(x,y) = \left(e^x + \tan^{-1}y\right)\mathbf{i} + \left(3xy + \frac{x}{1+y^2}\right)\mathbf{j}$$

along the polar curve $r=1+\cos\theta$, $(0 \le \theta \le \pi)$.

Department:

Id number:

Name:

5.(14 pts.) Evaluate the line integral

$$\int_{C} (x+y^{2}) dx + (xz) dy + (y+z) dz$$

where C consists of line segments from $(\pi,0,0)$ to (0,0,0), from (0,0,0) to $(0,\pi,0)$ and from $(0,\pi,0)$ to $(0,0,\pi)$.

6.(14 pts.) Find the area of the part of the surface $2x-y^2-3z^2=0$ that lies inside the elliptic cylinder $y^2+9z^2=1$.

Department: Id number: Name:

7.(15 pts.) Let S be the surface obtained by revolving the curve $(x-2)^2+z^2=1,\ z\geq 0$, about the z-axis. Evaluate the flux of $\mathbf{F}(x,y,z)=y\,\mathbf{i}-x\,\mathbf{j}+z\,\mathbf{k}$ across S where S is oriented upward.

8.(15 pts.) Consider a polar curve

$$C_1: r=2-2\cos\theta, \frac{\pi}{3} \le \theta \le \pi$$
, in the xy -plane.

Let S be the surface obtained by revolving the curve C_1 about the x-axis and let $\mathbf{F}(x,y,z)=(x+e^zy^2+z^2y)\,\mathbf{i}+(x^2\sin y+xy^2\cosh y)\,\mathbf{j}+(xy-e^{xz}\cos z)\,\mathbf{k}$. Evaluate

$$\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$$

where S is oriented in the direction of the positive x-axis.

Department:

Id number:

Name:

9.(15 pts.) Let $\mathbf{F}(x,y,z) = \frac{1}{(x^2 + y^2 + z^2)^{3/2}} (x \mathbf{i} + y \mathbf{j} + z \mathbf{k}).$

Evaluate the flux $\iint_S \mathbf{F} \cdot d\mathbf{S}$ where S is the part of the paraboloid $z=2-x^2-y^2\,,\,-1\leq z\leq 2\,,$ oriented upward.

10.(20 pts.)

(a) 행렬
$$A = \begin{bmatrix} 3 & 5 - 2 & 6 \\ 1 & 2 - 1 & 1 \\ 2 & 4 & 1 & 5 \\ 3 & 7 & 5 & 3 \end{bmatrix}$$
에 대해

 $\det((2A)^T) + \det(A^2)$ 를 구하시오.

(b) 크레머 공식 (Cramer's Rule)을 이용하여, 다음 연립방정식의 해 중 w의 값을 구하시오.

$$\begin{cases} x + 3y + 5z + 2w = 1 \\ -y + 3z + 4w = -1 \\ 2x + y + 9z + 6w = 0 \\ 3x + 2y + 4z + 8w = 1 \end{cases}$$