1.(14 pts.) Use the change of variables to evaluate

$$
\iint_{R} \sqrt{3} \cos \left(x^{2}-x y+y^{2}\right) d A
$$

where R is the region bounded by the ellipse $x^{2}-x y+y^{2}=1$.
2.(14 pts.) Find the center of mass of a wire that lies along the curve $\mathrm{r}(t)=\left(t^{2}-1\right) \mathrm{j}+2 t \mathrm{k},-1 \leq t \leq 1$, if the density is $\delta(x, y, z)=15 \sqrt{y+2}$.
3.(15 pts.) Let $\mathrm{F}(x, y, z)=\frac{-y}{x^{2}+y^{2}} \mathbf{i}+\frac{x}{x^{2}+y^{2}} \mathbf{j}+e^{z} \mathrm{k}$ and C be a curve given by

$$
\mathrm{r}(t)=\cos ^{2} t \mathbf{i}+\sin ^{3} t \mathbf{j}+t \mathrm{k}, \quad 0 \leq t \leq \pi / 2 .
$$

Evaluate $\int_{C} \mathrm{~F} \cdot d \mathbf{r}$.
4.(14 pts.) Use the Green’s Theorem to evaluate the line integral of

$$
\mathrm{F}(x, y)=\left(e^{x}+\tan ^{-1} y\right) \mathrm{i}+\left(3 x y+\frac{x}{1+y^{2}}\right) \mathrm{j}
$$

along the polar curve $r=1+\cos \theta, \quad(0 \leq \theta \leq \pi)$.
5.(14 pts.) Evaluate the line integral

$$
\int_{C}\left(x+y^{2}\right) d x+(x z) d y+(y+z) d z
$$

where C consists of line segments from $(\pi, 0,0)$ to $(0,0,0)$, from $(0,0,0)$ to ($0, \pi, 0$) and from ($0, \pi, 0$) to ($0,0, \pi$).
6.(14 pts.) Find the area of the part of the surface $2 x-y^{2}-3 z^{2}=0$ that lies inside the elliptic cylinder $y^{2}+9 z^{2}=1$.
7.(15 pts.) Let S be the surface obtained by revolving the curve $(x-2)^{2}+z^{2}=1, \quad z \geq 0$, about the z-axis. Evaluate the flux of $\mathrm{F}(x, y, z)=y \mathrm{i}-x \mathbf{j}+z \mathrm{k}$ across S where S is oriented upward.
8.(15 pts.) Consider a polar curve
$C_{1}: r=2-2 \cos \theta, \frac{\pi}{3} \leq \theta \leq \pi$, in the $x y$-plane.
Let S be the surface obtained by revolving the curve C_{1} about the x-axis and let $\mathrm{F}(x, y, z)=\left(x+e^{z} y^{2}+z^{2} y\right) \mathrm{i}$
$+\left(x^{2} \sin y+x y^{2} \cosh y\right) \mathbf{j}+\left(x y-e^{x z} \cos z\right) \mathbf{k}$. Evaluate

$$
\iint_{S} \operatorname{curlF} \cdot d \mathrm{~S}
$$

where S is oriented in the direction of the positive x-axis.
9.(15 pts.) Let $\mathrm{F}(x, y, z)=\frac{1}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}(x \mathbf{i}+y \mathbf{j}+z \mathrm{k})$. Evaluate the flux $\iint_{S} \mathrm{~F} \cdot d \mathrm{~S}$ where S is the part of the paraboloid $z=2-x^{2}-y^{2},-1 \leq z \leq 2$, oriented upward.

10.(20 pts.)

(a) 행렬 $A=\left[\begin{array}{rrrr}3 & 5 & -2 & 6 \\ 1 & 2 & -1 & 1 \\ 2 & 4 & 1 & 5 \\ 3 & 7 & 5 & 3\end{array}\right]$ 에 대해
$\operatorname{det}\left((2 A)^{T}\right)+\operatorname{det}\left(A^{2}\right)$ 를 구하시오.
(b) 크레머 공식 (Cramer's Rule)을 이용하여, 다음 연립방정식의 해 중 w 의 값을 구하시오.

$$
\left\{\begin{aligned}
x+3 y+5 z+2 w & =1 \\
-y+3 z+4 w & =-1 \\
2 x+y+9 z+6 w & =0 \\
3 x+2 y+4 z+8 w & =1
\end{aligned}\right.
$$

