Department :
Id number :
Name :
1.(15 pts.) Find the limit, if it exists, or show that the limit does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{(\sin x+\sin y)^{2}}{x^{2}+y^{2}}$
(b) $\lim _{(x, y, z) \rightarrow(0,0,0)} \frac{x^{3} y z+x y^{3} z-x y z^{3}}{x^{2}+y^{2}+z^{2}}$
2.(15 pts.) Answer the following questions.
(a) Sketch the region of integration and evaluate the integral.

$$
\int_{0}^{1} \int_{x / 2}^{2 x} e^{y^{2}} d y d x+\int_{1}^{4} \int_{x / 2}^{2} e^{y^{2}} d y d x
$$

(b) Sketch the region of integration and express the sum of double integrals as a single iterated integral with reversed order of integration. (Do NOT evaluate the integral.)

$$
\begin{aligned}
& \int_{-1}^{0} \int_{0}^{\frac{2}{3}(x+1)} f(x, y) d y d x+\int_{0}^{2} \int_{0}^{\frac{2}{3}(x+1)} f(x, y) d y d x \\
& \quad+\int_{2}^{6} \int_{0}^{\sqrt{6-x}} f(x, y) d y d x+\int_{2}^{6} \int_{\sqrt{6-x}}^{2} f(x, y) d y d x
\end{aligned}
$$

3.(15 pts.) Answer the following questions if

$$
\begin{aligned}
& f(x, y)=g\left(x^{2} y, e^{x y+1}-3,3 x y^{2}-2\right) \text { and } \\
& g(r, s, t)=r^{2}+2 s^{2}-t^{2}
\end{aligned}
$$

(a) Use the chain rule to find $f_{x}(1,-1)$ and $f_{y}(1,-1)$.
(b) Find the linearization of $f(x, y)$ at $(1,-1)$.
(c) Use the result of (b) to estimate $f(1.01,-1.02)$.
4.(15 pts.) Find the local maximum and minimum values and saddle point(s) of the function

$$
f(x, y)=6 x^{3}-3 x^{2} y+\frac{15}{2} x^{2}+y^{2}+4 y .
$$

5.(15 pts.) Suppose that the differentiable functions f and g satisfy the followings:
(1) f has the maximum rate of change at the point $P\left(x_{0}, y_{0}, z_{0}\right)$ in the direction of the vector $\langle 2,-1,3\rangle$ with the rate $2 \sqrt{7}$.
(2) The tangent plane to the surface $g(x, y, z)=\sqrt{2}$ at the point P is parallel to the plane $x+2 y-z=1$.
(3) $D_{\mathrm{u}} g\left(x_{0}, y_{0}, z_{0}\right)=4$ for $\mathrm{u}=\frac{1}{3}\langle 2,-1,2\rangle$.
(4) $f\left(x_{0}, y_{0}, z_{0}\right)=\frac{1}{2}$ and $g\left(x_{0}, y_{0}, z_{0}\right)=\sqrt{2}$.
(a) Find the gradient vector ∇f at the point P.
(b) Find the gradient vector ∇g at the point P.
(c) Let $h(x, y, z)=f(x, y, z) g(x, y, z)$. Find the rate of change of h at the point P in the direction of the vector $\langle-1,2,-2\rangle$.
6.(15 pts.) Use Lagrange multipliers to find the absolute maximum and minimum values of the function $f(x, y)=x^{3}+y^{3}-\frac{3}{2} x^{2} y^{2}$ on the circle $x^{2}+y^{2}=5$.
7.(15 pts.) Answer the following questions.
(a) When the plane $x+y+m z=2$ is tangent to the ellipsoid $x^{2}+\frac{y^{2}}{2}+\frac{z^{2}}{2}=1$, find the positive real number m.
(b) For m in the result of (a), when the plane $x+y+m z=2$ is also tangent to the paraboloid $z=x^{2}+y^{2}+k$, find the real number k.
8.(15 pts.) Suppose that the lamina occupies the region

$$
D=\left\{(x, y) \mid x^{2}+y^{2} \leq 2 x, x^{2}+y^{2} \geq 1, y \geq 0\right\}
$$

with the density $\rho(x, y)=y$.
(a) Find the mass of the lamina.
(b) Find the x coordinate of the center of mass of the lamina.
9.(15 pts.) Find the volume of the solid that lies within the cylinder $x^{2}+y^{2}=2 y$, above the hemisphere $z=-\sqrt{4-x^{2}-y^{2}}$, and below the paraboloid $x^{2}+y^{2}=z$.
10.(15 pts.) Evaluate the integral.

$$
\begin{aligned}
& \int_{0}^{1} \int_{0}^{x} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x \\
& \quad+\int_{1}^{\sqrt{2}} \int_{0}^{\sqrt{2-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x
\end{aligned}
$$

