1. (15pts) Find the limit, if it exists, or show that the limit does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{4 x^{3}+x y}{x^{2}+y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{2}+y^{2}} \sin \left(\frac{1}{x^{2}+y^{2}}\right)$
2. (15pts) Let

$$
f(x, y)= \begin{cases}\frac{x^{3}+3 y^{5}}{x^{2}+x^{2} y^{2}+y^{4}}, & (x, y) \neq(0,0) \\ 0 & ,(x, y)=(0,0)\end{cases}
$$

(a) Show that $f(x, y)$ is continuous at the point $(0,0)$.
(b) Find $f_{x}(0,0)$ and $f_{x x}(0,0)$.
3. (15pts) Let $f(x, y, z)=x^{2}-2 y^{3}+3 z^{4}-2 x y z$.

Suppose that there exists a differentiable function $g(x, y)$ such that $g(1,-1)=1$ and $f(x, y, g(x, y))=8$.
(a) Find the directional derivative of $g(x, y)$ at $(1,-1)$ in direction of the fastest increasing.
(b) Use the linear approximation to the estimate $g(1.3,-1.2)$.
4. (15pts) Let $g(s, t)=f\left(\frac{t}{s}, s^{2}+t^{2}\right)$ and f be a differentiable function of x and y with $f_{x}(0,1)=2$, $f_{y}(0,1)=1, f_{x x}(0,1)=-1, f_{x y}(0,1)=3$ and $f_{y y}(0,1)=-2$.
(a) Find $g_{s}(1,0)$ and $g_{s s}(1,0)$.
(b) Find the function $h(x, y)$ satisfies

$$
s \frac{\partial g}{\partial s}+t \frac{\partial g}{\partial t}=h(x, y) \frac{\partial f}{\partial y}
$$

5. (15pts) Let $f(x, y)=x^{2} e^{-x}+y^{2}-2 y$.
(a) Find and classify the critical points of the function $f(x, y)$.
(b) Use the Lagrange multipliers to find the extreme values of the function $f(x, y)$ on the region $D=\left\{(x, y) \mid x^{2}+(y-1)^{2} \leq 1\right\}$.
6. (15pts) Find the volume of the solid that lies the surface $z=\cos y \tan ^{-1}\left(\cos ^{2} y\right)$ and above the region $D=\left\{(x, y) \left\lvert\, \sin ^{-1} x \leq y \leq \frac{\pi}{2}\right., 0 \leq x \leq 1\right\}$.
7. (15pts)
(a) Use the polar coordinates to combine the sum

$$
\begin{aligned}
\int_{1 / 2}^{1} \int_{-\sqrt{3} x}^{-\sqrt{1-x^{2}}} f(x, y) d y d x+ & \int_{1 / 2}^{1} \int_{\sqrt{1-x^{2}}}^{\sqrt{3} x} f(x, y) d y d x \\
+ & \int_{1}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} f(x, y) d y d x
\end{aligned}
$$

into one double integral.
(b) Find the center of mass above region if the density function is $\rho(x, y)=\sqrt{x^{2}+y^{2}}$.
8. (15pts)
(a) Rewrite the integral as an equivalent integral in the $d z d y d x$ order.

$$
\int_{0}^{1} \int_{0}^{1-\sqrt{1-(y-1)^{2}}} \int_{-\sqrt{1-z}}^{\sqrt{1-z}} f(x, y, z) d x d z d y
$$

(b) Convert the integral to an equivalent integral in spherical coordinates.

$$
\int_{0}^{\pi} \int_{0}^{2 \sin \theta} \int_{\sqrt{2 r \sin \theta-r^{2}}}^{\sqrt{4-r^{2}}} f(r \cos \theta, r \sin \theta, z) r d z d r d \theta
$$

9. (15pts) Evaluate $\iiint_{E}(1+x+y) d V$, where E is the solid that lies within the hyperboloid one-sheet $x^{2}+y^{2}-z^{2}=1$, above the plane $z=0$, and below the paraboloid $z=3-x^{2}-y^{2}$.
10. (15pts) Find the volume of the solid that lies above the cone $z=\sqrt{\frac{x^{2}+y^{2}}{3}}$ and below the surface $x^{2}+y^{2}+z^{2}-\sqrt{x^{2}+y^{2}+z^{2}}-z=0$.
