단답형: (1번~5번) 단답형의 답은 페이지 하단에 주어진 네모 칸에 써야 점수 인정받습니다. 주의할 것.
1.(6 pts .) Find the first 3 nonzero terms of the Maclaurin series for $f(x)=\left(\tan ^{-1} x\right)^{2}$.
2.(6 pts.) Find the minimum value of $A+B$ that satisfies

$$
1-2 \ln 2+\frac{4(\ln 2)^{2}}{2!}-\frac{8(\ln 2)^{3}}{3!}+\cdots=\frac{A}{B}
$$

where A and B are natural numbers.(자연수)
3. 6 pts.) If the angle between the vectors a and b is $\frac{\pi}{4}$ and $a \times b=\langle\sqrt{5},-2,4\rangle$, find $\left|\operatorname{proj}_{\mathrm{a}} \mathrm{b} \times \operatorname{proj}_{\mathrm{b}} \mathrm{a}\right|$.
4.(6 pts.) Let L be the line of intersection of the planes $3 x-y-2 z=1$ and $2 x+y-2 z=-1$.
(a) Find parametric equations for the line L.
(b) Find the distance from the point $(2,0,2)$ to L.
5.(6 pts.) Find parametric equations for the tangent line to the space curve obtained by taking intersection of the cylinder $x^{2}+4 y^{2}=9$ and the plane $x-y+z=0$ at the point $(3,0,-3)$.

1		
2		
3		
4	(a)	(b)
5		

단답형: (6번~10번) 단답형의 답은 페이지 하단에 주어진 네모 칸에 써야 점수 인정받습니다. 주의할 것.
6.(6 pts.) If z is defined implicitly as a function of x and y by the equation $e^{x y z}=\ln \left[x^{2} z(y+1)\right]$, find $\frac{\partial z}{\partial x}$ when $(x, y)=(1,0)$.
7.(6 pts .) Find the directional derivative of the function $f(x, y, z)=\sin (x y)+y z$ at the point $\left(0,-\frac{\pi}{3}, \frac{\pi}{3}\right)$ in the direction of the vector $v=3 \mathbf{j}+4 \mathrm{k}$.
8.(6 pts.) Find an equation of the tangent plane of the surface $x^{y}+y^{x}+\tan ^{-1}\left(x^{2}+y^{3}+z\right)=2$ at the point $(1,1,-2)$.
9.(6 pts.) The functions $a(x), b(x)$ and $c(x)$ satisfy

$$
\begin{aligned}
& \int_{0}^{2} \int_{y^{2}}^{y+2} f(x) d x d y \\
= & \int_{0}^{2} \int_{0}^{\square a(x)} f(x) d y d x+\int_{2}^{4} \int_{\square b(x)}^{\square c(x)} f(x) d y d x .
\end{aligned}
$$

Find $g(9)$, if $g(x)=a(x)-b(x)+[c(x)]^{2}$.
10.(6 pts.) Find the volume of the solid in the first octant that is bounded by the cylinders $x^{2}+z^{2}=4,3 z-x^{2}=0$ and the planes $x=0, y=0$ and $y=z$.

6	
7	
8	
9	
10	

서술형: (11번~16번) 풀이 과정을 자세히 기술해야 합니다.

11.(15 pts.) Let $f(x, y)=\sum_{n=0}^{\infty} \frac{y^{2 n+2}}{(2 n+1)!} x^{n}$.
(a) Find the value of $f\left(-1, \frac{\pi}{6}\right)$.
(b) Find the value of $g^{(4)}(0)$ if $g(x)=f_{y x}(x,-1)$.
12.(15 pts.) Let L_{1} and L_{2} be the lines

$$
\begin{aligned}
& L_{1}: x=2 t, \quad y=0, \quad z=-t \\
& L_{2}: \frac{x-1}{3}=\frac{y+1}{2}=\frac{z-2}{1}
\end{aligned}
$$

(a) Find the value of $\cos \theta(0 \leq \theta \leq \pi)$ where θ is the angle between the directional vectors of L_{1} and L_{2}.
(b) Show that the lines L_{1} and L_{2} are skew.
(c) Find the distance between L_{1} and L_{2}.
13.(15 pts.) Let P be a parallelopiped whose adjacent edges a, b, c are parallel to the vectors $\left.v_{a}=<-1,2,2\right\rangle$, $\left.\boldsymbol{v}_{b}=<1,0,-1\right\rangle$ and $\left.\boldsymbol{v}_{c}=<0,-1,1\right\rangle$ with lengths x, y and z, respectively.
(a) Find the volume of P as a function of x, y and z.
(b) Find the maximum value of $f(x, y, z)$ on $x+y+z=12$.
14.(15 pts.) Find the maximum and minimum values of $f(x, y, z)=x y z$ on $x^{2}+y^{2}+z^{2} \leq 1$.
15.(15 pts.) Let $f(x, y)=x^{3}+3 x y^{2}-15 x+y^{3}-15 y$.
(a) Find all critical points of $f(x, y)$.
(b) Find the local maximum and minimum values, and saddle point(s) of $f(x, y)$.
16.(15 pts.) Evaluate the following double integrals.
(a) $\int_{-1}^{1} \int_{|y|}^{1} e^{1+x^{2}} d x d y$.
(b) $\int_{0}^{2} \int_{\sin ^{-1}\left(\frac{y}{2}\right)}^{\frac{\pi}{2}} \frac{1}{2+2 \cos ^{2} x} d x d y$.

