

Calculus I [MATH 161 (22~24)]

Final Exam (Spring 2023)

Department :

Id number :

Name :

단답형: (1번~10번) 단답형의 답은 페이지 하단에 주어진
네모 칸에 써야 점수 인정받습니다. 주의할 것.

1. (6 pts.) Let $\mathbf{a} = \langle 1, 2, -3 \rangle$ and $\mathbf{b} = \langle 2, 0, 1 \rangle$.

Find $\mathbf{a} \cdot \mathbf{b}$ and $\mathbf{a} \times \mathbf{b}$.

2. (6 pts.) Find the distance from the point $(1, -2, 4)$

to the plane $\frac{3}{2}x + y + 3z = \frac{5}{2}$.

※ (3~4) Let $\alpha = \langle 0, 1, a \rangle$, $\beta = \langle 1, 0, 2 \rangle$, and

$\gamma = \langle 3, -2, b \rangle$. Suppose that

i) α , β , and γ lie in the same plane and

ii) $\text{proj}_{\beta} \alpha = \text{proj}_{\beta} \gamma$.

3. (6 pts.) Find the real numbers a and b .

4. (6 pts.) Find the area of the parallelogram determined by the vectors β and γ .

5. (6 pts.) Find the tangent plane to the function

$f(x, y) = 4 \tan^{-1} \left(\frac{x}{y} \right)$ at $(1, 1)$.

1	$\mathbf{a} \cdot \mathbf{b} =$	$\mathbf{a} \times \mathbf{b} =$
2		
3	$a =$	$b =$
4		
5		

Department :

Id number :

Name :

6. (6 pts.) Find $f_{xy}(1, -1)$ and $f_{yy}(1, -1)$ of the function $f(x, y) = \frac{y}{2x+3y}$.

7. (6 pts.) Find the number of all critical points of the function $f(x, y) = e^{-(x^2+y^2)} (4xy)$.

8. (6 pts.) If $z = \tan^{-1}(x^2+y^2)$, where $x = s \ln t$ and $y = te^s$, then find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ when $s = 0$ and $t = e$.

9. (6 pts.) Find the volume of the solid enclosed by the parabolic cylinder $y = 4 - x^2$ and the planes $y = 0$, $z = 0$, and $2y + z = 8$.

6	$f_{xy}(1, -1) =$	$f_{yy}(1, -1) =$
7		
8	$\frac{\partial z}{\partial s} =$	$\frac{\partial z}{\partial t} =$
9		
10		

10. (6 pts.) Find the volume of the solid that lies inside the sphere $x^2 + y^2 + z^2 = 3$ and above the paraboloid $z = x^2 + y^2 - 1$.

Department :

Id number :

Name :

서술형: (11번~16번) 풀이 과정을 자세히 기술해야 합니다.

11. (10 pts.) Find the distance between the given skew lines

$$L_1 : x = t, \quad y = 3, \quad z = 2t ;$$

$$L_2 : 3 - x = \frac{y - 4}{4} = \frac{z - 1}{2} .$$

12. Answer the following questions:

(1) (5 pts.) Find the directional derivative $D_{\mathbf{u}} f(x, y)$ of the function $f(x, y, z) = y^{xz}$ at the point $(2, e, 1)$ in the direction of the vector $\mathbf{u} = \frac{1}{5}(4\mathbf{i} - 3\mathbf{k})$.

(2) (10 pts.) Suppose that the maximum rate of change of a differentiable function $w = f(x, y, z)$ at the point $P(1, 2, 3)$ is 6 and the direction in which it occurs is $\langle 2, 2, -1 \rangle$. Find $\nabla f(P)$ and the directional derivative of f at the point P in the direction of $\langle 1, -1, -1 \rangle$.

Department :

Id number :

Name :

13. Let P_1 be the tangent plane to the surface $xyz = -2$ at the point $Q(1, 2, -1)$, and P_2 be the tangent plane to the surface $3x^2 + y^2 + 5z^2 = 12$ at the point Q . Answer the following questions:

(1) (9 pts.) Find symmetric equations for the line of intersection between the planes P_1 and P_2 .

(2) (6 pts.) Find the distance from the point $R(0, 2, 4)$ to the line in (1).

14. Let $f(x, y) = x^3 + y^3 + 3x^2 - 3y^2$. Answer the following questions:

(1) (7 pts.) Classify the critical points of $f(x, y)$.

(2) (8 pts.) Find the Maximum and minimum values of $f(x, y)$ on the region

$$D = \{(x, y) \mid x^2 + y^2 \leq 16, x \geq 0, y \geq 0\}.$$

Department :

Id number :

Name :

15. Evaluate the double integrals:

$$(1) \text{ (10 pts.) } \int_0^1 \int_{\sin^{-1}y}^{\pi/2} \sec^2(\cos x) dx dy$$

$$(2) \text{ (10 pts.) } \int_1^2 \int_0^{\sqrt{4-x^2}} 48(x^2+y^2)^{-2} dy dx$$

16. (15 pts.) Find all numbers a, b , and c which minimize the double integral

$$\int_0^1 \int_0^{1-y^2} \frac{2xy(4a^2x^2+3b^2x+2c^2)}{1-x} dx dy,$$

where a, b , and c satisfy the relation $a^2+2b+c=5$.