2. (6 pts.) Find the distance from the point ($1,-2,4$) to the plane $\frac{3}{2} x+y+3 z=\frac{5}{2}$.
※ (3~4) Let $\alpha=\langle 0,1, a\rangle, \beta=\langle 1,0,2\rangle$, and $\gamma=\langle 3,-2, b\rangle$. Suppose that
i) α, β, and γ lie in the same plane and
ii) $\operatorname{proj}_{\beta} \alpha=\operatorname{proj}_{\beta} \gamma$.
3. (6 pts.) Find the real numbers a and b.
4. (6 pts.) Find the area of the parallelogram determined by the vectors β and γ.
5. (6 pts.) Find the tangent plane to the function $f(x, y)=4 \tan ^{-1}\left(\frac{x}{y}\right)$ at $(1,1)$.

1	$a \cdot b=$	$a \times b=$
2		
3	$a=$	
4		
5		

7. (6 pts.) Find the number of all critical points of the function $f(x, y)=e^{-\left(x^{2}+y^{2}\right)}(4 x y)$.
8. (6 pts.) If $z=\tan ^{-1}\left(x^{2}+y^{2}\right)$, where $x=s \ln t$ and $y=t e^{s}$, then find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ when $s=0$ and $t=e$.
9. (6 pts.) Find the volume of the solid enclosed by the parabolic cylinder $y=4-x^{2}$ and the planes $y=0$, $z=0$, and $2 y+z=8$.
10. (6 pts.) Find the volume of the solid that lies inside the sphere $x^{2}+y^{2}+z^{2}=3$ and above the paraboloid $z=x^{2}+y^{2}-1$.

6	$f_{x y}(1,-1)=$	$f_{y y}(1,-1)=$
7		
8	$\frac{\partial z}{\partial s}=$	$\frac{\partial z}{\partial t}=$
9		
10		

서술형: (11번~16번) 풀이 과정을 자세히 기술해야 합니다.
11. (10 pts.) Find the distance between the given skew lines

$$
\begin{aligned}
& L_{1}: x=t, \quad y=3, \quad z=2 t \\
& L_{2}: 3-x=\frac{y-4}{4}=\frac{z-1}{2} .
\end{aligned}
$$

12. Answer the following questions:
(1) (5 pts.) Find the directional derivative $D_{u} f(x, y)$ of the function $f(x, y, z)=y^{x z}$ at the point $(2, e, 1)$ in the direction of the vector $u=\frac{1}{5}(4 \mathrm{i}-3 \mathrm{k})$.
(2) (10 pts.) Suppose that the maximum rate of change of a differentiable function $w=f(x, y, z)$ at the point $P(1,2,3)$ is 6 and the direction in which it occurs is $\langle 2,2,-1\rangle$. Find $\nabla f(P)$ and the directional derivative of f at the point P in the direction of $\langle 1,-1,-1\rangle$.
13. Let P_{1} be the tangent plane to the surface $x y z=-2$ at the point $Q(1,2,-1)$, and P_{2} be the tangent plane to the surface $3 x^{2}+y^{2}+5 z^{2}=12$ at the point Q. Answer the following questions:
(1) (9 pts.) Find symmetric equations for the line of intersection between the planes P_{1} and P_{2}.
(2) (6 pts.) Find the distance from the point $R(0,2,4)$ to the line in (1).
14. Let $f(x, y)=x^{3}+y^{3}+3 x^{2}-3 y^{2}$. Answer the following questions:
(1) (7 pts.) Classify the critical points of $f(x, y)$.
(2) (8 pts.) Find the Maximum and minimum values of $f(x, y)$ on the region

$$
D=\left\{(x, y) \mid x^{2}+y^{2} \leq 16, x \geq 0, y \geq 0\right\} .
$$

15. Evaluate the double integrals:
(1) (10 pts.) $\int_{0}^{1} \int_{\sin ^{-1} y}^{\pi / 2} \sec ^{2}(\cos x) d x d y$
(2) (10 pts.) $\int_{1}^{2} \int_{0}^{\sqrt{4-x^{2}}} 48\left(x^{2}+y^{2}\right)^{-2} d y d x$
16. (15 pts.) Find all numbers a, b, and c which minimize the double integral

$$
\int_{0}^{1} \int_{0}^{1-y^{2}} \frac{2 x y\left(4 a^{2} x^{2}+3 b^{2} x+2 c^{2}\right)}{1-x} d x d y
$$

where a, b, and c satisfy the relation $a^{2}+2 b+c=5$.

