풀이 과정을 자세히 기술해야 합니다.

1. (15pts) Test the series for convergence or divergence. Give reasons for your answers.
(a) $\sum_{n=1}^{\infty} n e^{-\sqrt{n}}$
(b) $\sum_{n=1}^{\infty} \frac{\operatorname{coth} n}{n^{2}}$
(c) $\sum_{n=1}^{\infty}(-1)^{n}\left(\sec \frac{1}{n^{3}}-1\right)$
2. (10pts) Find all positive values of p for which the series is convergent.

$$
\sum_{n=1}^{\infty}(\ln n)^{2} \sin \left(\frac{1}{n^{p}}\right)
$$

3. (10pts)

Suppose that $a_{n}>0$ and $\sum_{n=1}^{\infty} a_{n}$ is convergent.
(a) Determine whether the series is convergent or divergent. Give a reason for your answer.

$$
\sum_{n=1}^{\infty} \sqrt{1-\cos \left(a_{n}\right)}
$$

(b) Find the interval of convergence of the power series $\sum_{n=1}^{\infty}\left(1+a_{n}\right) x^{n}$.
4. (10pts) Show that

$$
\sum_{n=0}^{\infty} \frac{1}{2 n+1}\left(\frac{4 n}{(2 n)!}+\frac{(-1)^{n}}{5^{n}}\right)=\frac{2}{e}+\sqrt{5} \tan ^{-1}\left(\frac{1}{\sqrt{5}}\right)
$$

5. (10pts)
(a) Use the binomial series, find the Maclaurin series for $f(x)=\frac{x^{2}}{\sqrt{1+x^{2}}}$.
(b) Evaluate $\int_{0}^{1 / 2} \frac{x^{2}}{\sqrt{1+x^{2}}} d x$ correct to within $\frac{1}{10^{3}}$.
6. (10pts)
(a) Find $\left(\operatorname{proj}_{2 \mathrm{a}} 3 \mathrm{~b}\right) \cdot\left(\operatorname{proj}_{4 \mathrm{~b}} \mathrm{a}\right)$ if

$$
\mathrm{a} \cdot \mathrm{~b}=\frac{1}{2} \text { and }|\mathrm{a} \times \mathrm{b}|=\frac{3}{2} .
$$

(b) Suppose that
$\mathrm{u}=\langle-1, a, b\rangle, \mathrm{v}=\langle 1,0,-1\rangle$, and $\mathrm{w}=\langle-3,2,1\rangle$
Determine a and b if $\mathbf{u} \cdot(\mathrm{v} \times \mathrm{w})=0$ and $\mathrm{u}-\mathrm{w}$ is orthogonal to $\operatorname{proj}_{\mathrm{v}} \mathrm{w}$.
7. (15pts)
(a) Let P_{1} be the plane that passes through the point ($3,-2,3$) and is perpendicular to the plane $x+y-z=2$ and $3 x-y+2 z=1$.
And let P_{2} be the plane that passes through the point ($4,-1,1$) and contains the line

$$
x=1-t, y=3 t, z=3+2 t
$$

Find the parametric equation for L_{1} if L_{1} be the line of intersection of the planes P_{1} and P_{2}.
(b) Find the symmetric equation for L_{2} if L_{2} is the line through the point $(1,-1,2)$ and perpendicular to both $2 \mathrm{i}+\mathrm{k}$ and $3 \mathrm{i}-\mathrm{j}+2 \mathrm{k}$.
(c) Calculate the distance between L_{1} and L_{2}.
8. (10pts) Let C be the curve parameterized by $\mathrm{r}(t)=\left\langle R \sin (t) \cos (t), R \sin ^{2}(t), R \cos (t)\right\rangle, 0 \leq t \leq 2 \pi$ where R is a positive constant. Find the minimum of the curvature of C.
9. (10pts) Let C be a curve parametrized by

$$
\mathrm{r}(t)=\left\langle\sin (2 t),-\cos (2 t), 4 t^{2}\right\rangle
$$

(a) Find T, N, and B at $(0,-1,0)$.
(b) Find the osculating plane and normal plane at ($0,-1,0$).

