Calculus I [MATH 161]

Department :	Id number :	Name :
		2.(12 pts.) Evaluate the integrals.
1.(10 pts.)		(a) $\int \sin^{-1}(2x) dx$
(a) Suppose that $s(y)$ is the arc length	function of	
the curve $x = y^4 - y^3$ starting from th where $y \ge 0$.	e point (0, 0),	(b) $\int \frac{x^2}{\sqrt{x^2 - x}} dx$
Find the differential ds and evaluate	ds for $y = \frac{3}{4}$	
and $dy = 0.02$.		
(b) Find the value of $\frac{d^2y}{dx^2}$ at the point	(0, 1) if	
$x = y^4 - y^3.$		

3.(10 pts.) Suppose that f(x) is a continuous <u>even</u> <u>function</u>. Find a function f(x) and a real number k such that

$$\int_{-x}^{x} (\sinh t - 1)f(t) dt + (k - 1) = \int_{-k}^{x} t^2 f(t) dt - x - \tan^{-1} x$$

for all $x > 0$.

4.(10 pts.) Find the value(s) of the constant C for which the integral

$$\int_{1}^{\infty} \left(\frac{C}{x+1} - \frac{2\cos(2\cot^{-1}\sqrt{x})}{3x-1} \right) dx$$

converges. Evaluate the integral for this value(s) of C.

Department :	Id number :	Name :
5.(10 pts.)		6.(12 pts.)
Let $f(x) = \tanh^{-1}(\cos x) - \operatorname{sech}^{-1}(\sin x)$.	Find $f\left(\frac{\pi}{100}\right)$.	(a) Sketch the graphs $r = 2 + 2\sin 3\theta$ and $r = 2$.
		(b) Find the area of the region that lies inside the
		curve $r=2+2\sin 3\theta$ and outside the circle $r=2$.

7.(12 pts.) Suppose that the continuous decreasing function f(x) satisfies the followings:

(1)
$$f(0) = 1$$
, $f(1) = 0$
(2) $\int_0^1 f(x) dx = \frac{1}{4}$, $\int_0^1 x f(x) dx = \frac{1}{8}$

Let V(a) be the volume of the solid obtained by rotating the region bounded by y=f(x), x=a, y=0, and y=1 about the line x=a.

Find the minimum value of V(a) on $0 \le a \le 1$.

8.(12 pts.)

Find $\lim_{x \to 0^+} \frac{x \ln x}{(\sin(2x))^{\tan(2x)} - 1}$.

9.(12 pts.) Let C be the one arc of the cycloid given by

 $x = r(\theta - \sin\theta), \ y = r(1 - \cos\theta), \ 0 \le \theta \le 2\pi$ (r > 0)Find the area of the surface obtained by rotating the curve *C* about the line $x = \pi r$.