1. (10 pts.) Evaluate the integral by changing to spherical coordinates.
$\int_{0}^{\pi / 2} \int_{1 / 2}^{1} \int_{\sqrt{1-r^{2}}}^{\sqrt{3} r}\left(r^{3}+r z^{2}-r\right) d z d r d \theta$

$$
+\int_{0}^{\pi / 2} \int_{1}^{2} \int_{0}^{\sqrt{3} r}\left(r^{3}+r z^{2}-r\right) d z d r d \theta
$$

$$
+\int_{0}^{\pi / 2} \int_{2}^{4} \int_{0}^{\sqrt{4^{2}-r^{2}}}\left(r^{3}+r z^{2}-r\right) d z d r d \theta
$$

2. (10 pts.) Let $\mathbf{F}(x, y, z)=\left\langle y^{2} z, 2 x y z+1, x y^{2}+x\right\rangle$ and $\mathrm{G}(x, y, z)=\langle 0,0, x\rangle$.
(a) Find the $\operatorname{curl} F, \operatorname{curl} G$ and $\operatorname{curl}(F-G)$.
(b) Evaluate $\int_{C} \mathrm{~F} \cdot d \mathbf{r}$, where C consists of C_{1} given by

$$
\mathbf{r}_{1}(t)=\left\langle 3 t, e^{t^{2}-t}, t^{2}\right\rangle, 0 \leq t \leq 1
$$

followed by the line segment C_{2} from $(3,1,1)$ to (1, 2, 2).
3. (10 pts.) Let C be the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=1$.
(a) Evaluate the line integral

$$
\int_{C}\left(e^{x}+x^{2} \sinh ^{-1} y\right) d x+\left(x y+\frac{x^{3}}{3 \sqrt{1+y^{2}}}\right) d y
$$

(b) Find the area of the region bounded by the curve C.
4. (15 pts.) Evaluate $\iint_{S} x y+1 d S$, where S is the boundary of the region enclosed by the cylinder $x^{2}+y^{2}=1$ and the plane $z=0$ and the surface $z=\frac{1}{2}\left(x^{2}-y^{2}\right)+1$.
5. (10 pts.) Find the flux of

$$
\mathrm{F}(x, y, z)=\left\langle 2 y \sin \left(x^{2} y\right),-3 x \sin \left(x^{2} y\right), z\right\rangle
$$

across the half-ellipsoid $\frac{x^{2}}{2}+\frac{y^{2}}{3}+z^{2}=1(z \geq 0)$ with upward orientation.
6. (10 pts.) Evaluate $\int_{C} \mathrm{~F} \cdot d \mathrm{r}$ if

$$
\mathrm{F}(x, y, z)=\left(e^{z^{2}}+z\right) \mathbf{i}+\left(x^{2}-2 z^{2}\right) \mathbf{j}+\left(y^{4}+\sin \left(x^{3}\right)\right) \mathbf{k}
$$

and C is the curve with parametric equations $x=2-2 \sin t, y=2 \cos t, z=2 \sin t, \quad 0 \leq t \leq 2 \pi$.
7. (15 pts.)
(a) 행렬 A 에 대해 다음 물음에 답하시오.

$$
A=\left(\begin{array}{ccc}
t^{2}(t-2) & 4-2 t & 2-t \\
t & -2 t & 1 \\
t & 2 & -t
\end{array}\right)
$$

(i) $\operatorname{det}\left(A^{2023}\right)=0$ 을 만족하는 t 의 값을 모두 구하시오.
(ii) $t=3$ 일 때 $\operatorname{det}\left(A^{-1}\right)$ 의 값을 구하시오.
(b) 크레머(Cramer's Rule)의 공식을 이용하여 다음 연립 방정식의 해 중 z 의 값을 구하시오.

$$
\left\{\begin{aligned}
2 x-4 y+2 z-w & =3 \\
y-3 z & =-2 \\
x-4 z & =1 \\
y-z+2 w & =-4
\end{aligned}\right.
$$

8. (15 pts.) Let $\mathrm{F}(x, y)=\left\langle x^{2} y-y,-x y^{2}\right\rangle$.
(a) Compute the line integral $\int_{C} \mathrm{~F} \cdot d \mathrm{r}$ if C is given by

$$
\mathrm{r}(t)=t \mathrm{i}, \quad-1 \leq t \leq 1
$$

(b) Find the simple piece-wise smooth curve C_{1} from $(1,0)$
to $(-1,0)$ in the upper half plane $y \geq 0$ for which $\int_{C_{1}} \mathrm{~F} \cdot d \mathbf{r}$ is a maximum.
(A curve is simple if it does not cross itself.)
(c) Find any simple piece-wise smooth curve C_{2} from $(1,0)$
to $(-1,0)$ in the whole $x y$-plane for which $\int_{C_{2}} \mathrm{~F} \cdot d \mathbf{r}$ is greater than $\int_{C_{1}} \mathrm{~F} \cdot d \mathbf{r}$ in (b).

9. (15 pts.)

Let $\mathrm{F}(x, y, z)=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}+z^{2} \mathbf{k}$.
Evaluate $\iint_{S} \mathrm{~F} \cdot d \mathrm{~S}$, where S is given by

$$
x^{2 / 3}+y^{2 / 3}+z^{2 / 3}=1
$$

oriented outward.

