1. (15pts) Find the limit, if it exists, or show that the limit does not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y-x y^{3}}{\left(x^{2}+y^{2}\right)^{2}}$
(b) $\lim _{(x, y) \rightarrow(0+, 0+)} \frac{x^{2} y\left(e^{-x y}-1\right)}{\left(x^{2}+y^{2}\right)^{2}}$
2. (10pts) Suppose that z is given implicitly as a function $z=g(x, y)$ by an equation of the form

$$
e^{z-2} \cos (2 x-z)=2 y^{3}-x \text { with } g(1,1)=2 .
$$

Use differentials to estimate the value of $g(1.04,0.99)$.

3. (15pts)

Let $z=f(x, y)$ has continuous second-order partial derivatives where $x=e^{2 s}-\sqrt{2} \cos t, y=e^{-s}+\sqrt{2} \sin t$. Use the table of values to calculate (a) and (b).

(x, y)	f_{x}	f_{y}	$f_{x x}$	$f_{x y}$	$f_{y y}$
$(0,2)$	1	-2	2	3	-1

(a) Find the second directional derivative of $f(x, y)$ at $(0,2)$ in the direction of the vector $\vec{v}=\langle 1,1\rangle$.
(b) Find the value of $\frac{\partial^{2} z}{\partial s^{2}}$ when $s=0$ and $t=\frac{\pi}{4}$.
4. (10pts) Consider a rectangular box without a lid whose volume is $80 \mathrm{~cm}^{3}$. The costs required to make the box are as follows:

The cost of the bottom of the box is 400 won per cm^{2}. The cost of the front of the box is 300 won per cm^{2}. The cost of the remaining sides of the box is 200 won per cm^{2}.

Use Lagrange multipliers to find the width, length, and height of the box with the minimum cost.
5. (10pts) Evaluate the double integral $\int_{0}^{2} \int_{y / 2}^{(4-y) / 2} y \sin \left(x^{3}-1\right) d x d y+\int_{1}^{2} \int_{4-2 x}^{2 x} y \sin \left(x^{3}-1\right) d y d x$
6. (10pts) Find the center of mass of the lamina that occupies the region

$$
D=\left\{(x, y) \mid 0 \leq y \leq \sin \beta, y \cot \beta \leq x \leq \sqrt{1-y^{2}}\right\}
$$

where $0<\beta<\pi / 2$ if the density function is

$$
\rho(x, y)=\sqrt{1-x^{2}-y^{2}} .
$$

7. (12pts) Find the volume of the region E bounded by $z=y^{2}, y+z=2, z=x, y=0$, and $x=2$.
8. (13pts) Evaluate the integral

$$
\int_{0}^{1} \int_{-\sqrt{\left(1-z^{2}\right) / 2}}^{\sqrt{\left(1-z^{2}\right) / 2}} \int_{\sqrt{y^{2}+z^{2}}}^{\sqrt{1-y^{2}}} z d x d y d z
$$

9. (15pts) A lamina is defined by the region $D=\{(x, y) \mid a \leq x \leq a+1, b \leq y \leq b+1\}$
with the density function $\rho(x, y)=x^{2}\left(1+y^{2}\right)$. Here, let the mass of the lamina be $f(a, b)$.
(a) Find the local maximum, minimum values and saddle point(s) of the $f(a, b)$.
(b) Find the absolute maximum and minimum values of the $f(a, b)$ on the set $R=\{(a, b)| | a \mid \leq 1$ and $|b| \leq 1\}$.
