Calculus I [MATH 161]

Midterm Exam (Spring 2024)

Department :	Id number :	Name :
(1번~10번) 풀이과정을 자세히 기술해야	합니다.	2.(10 pts.)
 1.(10 pts.) (a) Find the exact value of csc(sin⁻¹ 	$(\pi/4)$).	(a) If $f(x) = \int_0^{\tanh x} \sqrt{1-t^2} dt$ and $g(y) = \int_0^y f(x) dx$, find $g''(\ln 2)$.
(b) Evaluate the definite integral $\int_0^1 \frac{x^2}{(x^2+1)^{3/2}}dx$		(b) Find the exact length of the curve. $y = \cos^{-1}x - \sqrt{1-x^2}, \ 0 \le x \le 1$

3.(10 pts.) (a) For what value of the constant k is the function f continuous for all x in \mathbb{R} ?

$$f(x) = \begin{cases} \frac{1}{\sinh x} \int_{1}^{\cosh x} (1 + e^{t^2}) dt , \ x \neq 0 \\ k , \ x = 0 \end{cases}$$

(b) Find the linearization of f(x) at a=0.

4.(10 pts.) Assume that $0 \le f'(x) \le f(x)$ for all 1 < x < 3 and f(2) = 0. Use the mean value theorem to show that f(x) = 0 for all 1 < x < 3.

5.(10 pts.) Evaluate the limits.

(a)
$$\lim_{x \to 0^+} \left(\frac{1}{x} - \frac{1}{\sinh^{-1}x} \right)$$

(b) $\lim_{x \to 0^+} (\csc x)^{\frac{\cos x}{\ln x}}$

6.(10 pts.) The integral represents the volume of the solid obtained by rotating the region R about the $x = \frac{\pi}{2}.$

$$\int_{0}^{1} \pi \left[\left(\frac{\pi}{2} - \sin^{-1}(\sqrt{y}) \right)^{2} - \left(\frac{\pi}{2} - \sin^{-1}(\sqrt[4]{y}) \right)^{2} \right] dy$$

Use the method of cylindrical shells to find the volume of the solid.

7.(10 pts.) Determine whether the integral is convergent or divergent. Evaluate the integral if it converges.

$$\int_{1}^{\infty} \frac{-5x^2 + 10x}{(2x+1)^2(x^2+1)} \, dx$$

8.(10 pts.) Find the area of the surface obtained by rotating the curve $x = \sqrt{4-y^2}$ about the line x = 2.

9.(10 pts.)

(a) Sketch the curves $r = \sqrt{2}\sin(2\theta)$ and $r^2 = 3\cos(2\theta)$.

(b) Find the area inside the polar curve $r = \sqrt{2} \sin(2\theta)$ and outside the polar curve $r^2 = 3\cos(2\theta)$. 10.(10 pts.) The curve C is defined by the parametric equation

$$x = 5\cos t + \cos(5t), \quad y = 5\sin t - \sin(5t), \quad 0 \le t \le \frac{2}{3}\pi.$$

(a) Find an equation of the tangent to the curve $\ {\cal C}$

at $P(t=\frac{\pi}{3})$.

(b) Find the area enclosed by the curve C, the tangent to the curve C at P and x-axis.