Calculus II (MATH 162)

Department :

Id number :

Final Exam (Fall, 2024)

Name : 2. (10pts) Let C be the curve given by $C: \mathbf{r}(t) = t^3 \mathbf{i} - t^2 \mathbf{j} + t \mathbf{k}, 0 \le t \le 1$

(a) Evaluate
$$\int_C \mathbf{F} \cdot d\mathbf{r}$$
, where
 $\mathbf{F}(x, y, z) = (x + y^2)\mathbf{i} + xy\mathbf{j} + (y + z)\mathbf{k}$

(b) Evaluate $\int_C \sin y \, dx + (x \cos y + \cos z) \, dy - y \sin z \, dz$.

풀이 과정을 자세히 기술해야 합니다.

1. (10pts)

(a) Use Green's Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ if

 $\mathbf{F}(x,y) = \langle y - \cos y, x \sin y + y \rangle$, where *C* is the circle $(x-3)^2 + (y+4)^2 = 4$ oriented <u>counterclockwise</u>.

(b) Find the area of the pentagon with vertices (0,0), (2,1), (1,3), (0,2), and (-1,2).

- 3. (10pts) Let $g(x, y, z) = \int_0^{x+y-2z} f(u) du$ with $\int_0^1 f(u) du = 5 \text{ and } \int_0^1 uf(u) du = 3$ (a) Evaluate $\int_C f(x+y-2z) dx + f(x+y-2z) dy - 2f(x+y-2z) dz,$ where *C* is any smooth curve from (1, 3, 2) to (2, 5, 3). (b) Evaluate $\int_C g(x, y, z) ds$, where *C* is the line segment from (1, 3, 2) to (2, 5, 3).
- **4.** (10pts) Let $\mathbf{F} = \frac{x-y}{x^2+y^2} \mathbf{i} + \frac{x+y}{x^2+y^2} \mathbf{j}$ and *C* be the curve given by $\mathbf{r}(t) = t \mathbf{i} + (2t^2 6) \mathbf{j}, -2 \le t \le 2$. Find the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$.

Department :

5. (10pts) Let S be the surface given by

$$S\,:\,x^2+y^2-z^2=1$$

(1) Find a parametric representation for the surface S and the inward (toward z-axis) unit normal vector **n** of S.

(2) Find the area of the part of the surface S that lies between the plane z=0 and the plane z=1.

6. (10pts) Find $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$ if

$$\mathbf{F} = \left\langle 3ze^{x^2 - y^2}, 2ze^{x^2 - y^2}, 2x - 4y + e^{z^2} \right\rangle$$

and S is the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies in the half-space $y \ge x$ with <u>outward</u> orientation of the sphere. Department :

7. (10pts) Find the flux of

$$\mathbf{F}(x,y,z) = \left\langle -z^2 e^{(xy)^2} + \tan^{-1}(xz), z^2 e^{(xy)^2} - \frac{yz}{1+x^2 z^2}, -z+1 \right\rangle$$

across the paraboloid $z = 4 - x^2 - y^2$, $z \ge 0$ with <u>downward</u> orientation.

8. (10pts)

(a) 연립방정식 $\begin{cases} x + y + z = u \\ x - y + z = v \text{ 에 대하여} \\ x + y + 2z = w \end{cases}$

크레머 룰(Cramer's rule)을 이용하여, y를 구하시오.

(b) 아래 식을 만족하는 (*x*,*y*,*z*)의 집합 *E*에 대하여

 $(x+y+z)^2+(x-y+z)^2+(x+y+2z)^2 \le 1, x+y+2z \ge 0$ 위의 (a)를 이용하여, 다음 적분을 구하시오.

$$\iiint_E y^2 ((x+y+z)^2 + (x-y+z)^2 + (x+y+2z)^2) dV$$

9. (10pts) 다음 행렬 *A*, *B*에 대하여 det((2*A*)⁻¹*B^T*)를 구하시오.

$$A = \begin{pmatrix} 5 & 3-2 & 6 \\ 2 & 1-1 & 1 \\ 4 & 2 & 1 & 5 \\ 7 & 3 & 5 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1-2 & 3 & 1 \\ 5-9 & 6 & 3 \\ -1 & 2-6 & -2 \\ 2 & 8 & 6 & 1 \end{pmatrix}$$

10. (10pts) Let F(x,y,z) = (z-y)i+(x-z)j+(y-x)k/(x²+y²+z²)^{3/2}
and S is the outward oriented surface whose sides S₁ are given by cylinder x² + y² = 1 with 0 ≤ z ≤ 3, whose top S₂ is the part of the plane z = 3 inside the cylinder. (S is a cylinder without bottom.)
(a) Use divergence theorem to evaluate ∬_SF ⋅ dS.
(b) Find a vector field G such that F = ∇ × G. (you don't need to explain how to find it.)
(c) Use (b) and Stokes' theorem to evaluate ∬_SF ⋅ dS

again, as the line integral.